關(guān)于線性規(guī)劃的考查,在2014年高考中文科考查了線性規(guī)劃,利用可行域求最值,理科考查了二元一次不等式組表示的可行域,命題真假的判斷;在2015年高考中文理4套試卷均考查了目標(biāo)函數(shù)最值的求法,其中全國(guó)卷1理首次出現(xiàn)利用斜率求最值,2016年全國(guó)卷考查的均是線性目標(biāo)函數(shù)的最值,值得重視的是全國(guó)卷1理首次考查線性規(guī)劃應(yīng)用題.從近幾年高考試題來看,試題難度較低,屬于中低檔試題,一般放在選擇題的第5-7題或填空題的前兩位.從近幾年的高考試題來看,二元一次不等式(組)表示的平面區(qū)域(的面積),求目標(biāo)函數(shù)的最值,線性規(guī)劃的應(yīng)用問題等是高考的熱點(diǎn),題型既有選擇題,也有填空題,難度為中、低檔題.主要考查平面區(qū)域的畫法,目標(biāo)函數(shù)最值的求法,以及在取得最值時(shí)參數(shù)的取值范圍.同時(shí)注重考查等價(jià)轉(zhuǎn)化、數(shù)形結(jié)合思想.從近幾年高考試題,都沒涉及含參數(shù)的線性規(guī)劃問題,故預(yù)測(cè)2017年高考仍將以目標(biāo)函數(shù)的最值為主,理科可能會(huì)出現(xiàn)含參數(shù)的線性規(guī)劃問題或距離模型求最值,高考中理科線性規(guī)劃試題,一般比文科稍大,線性規(guī)劃的綜合運(yùn)用是主要考查點(diǎn),重點(diǎn)考查學(xué)生分析問題、解決問題的能力.
【重點(diǎn)知識(shí)整合】
1.平面區(qū)域的確定方法是“直線定界,特殊點(diǎn)定域”,二元一次不等式組所表示的平面區(qū)域是各個(gè)不等式所表示的半平面的交集.確定平面區(qū)域中單個(gè)變量的范圍、整點(diǎn)個(gè)數(shù)等,只需把區(qū)域畫出來,結(jié)合圖形通過計(jì)算解決.
【應(yīng)試技巧點(diǎn)撥】
1.二元一次不等式組表示平面區(qū)域的畫法:
2. 線性規(guī)劃中的分類討論思想
隨著對(duì)線性規(guī)劃的考查逐年的加深,數(shù)學(xué)思想也開始滲透其中,此類試題給人耳目一新的感覺.其中分類討論思想先拔頭籌.主要類型有:可行域中含有參數(shù)引起的討論和目標(biāo)函數(shù)中含有參數(shù)引起的討論.解法思路關(guān)鍵在于分類標(biāo)準(zhǔn)的得到.
3.應(yīng)用線性規(guī)劃解決簡(jiǎn)單的實(shí)際問題
在線性規(guī)劃的實(shí)際問題中把實(shí)際問題提煉成數(shù)學(xué)問題,根據(jù)實(shí)際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解.若實(shí)際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解,應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點(diǎn).
4. 線性規(guī)劃和其它知識(shí)交匯點(diǎn)
與線性規(guī)劃相關(guān)的知識(shí)非常豐富,如與不等式、函數(shù)、函數(shù)最值等.所以這些為命題者提供了豐富的素材,與線性規(guī)劃相關(guān)的新穎試題也就層出不窮.此類題目著重考查劃歸思想和數(shù)形結(jié)合思想,掌握線性規(guī)劃問題的“畫---移---求---答”四部曲,理解線性規(guī)劃解題程序的實(shí)質(zhì)是解題的關(guān)鍵.
5.含參變量的線性規(guī)劃問題是近年來高考命題的熱點(diǎn),由于參數(shù)的引入,提高了思維的技巧,增加了解題的難度.參變量的設(shè)置形式通常有如下兩種:
(1)條件不等式組中含有參變量,由于不能明確可行域的形狀,因此增加了解題時(shí)畫圖分析的難度,求解這類問題時(shí)要有全局觀念,結(jié)合目標(biāo)函數(shù)逆向分析題意,整體把握解題的方向;
(2)目標(biāo)函數(shù)中設(shè)置參變量,旨在增加探索問題的動(dòng)態(tài)性和開放性.從目標(biāo)函數(shù)的結(jié)論入手,對(duì)圖形的動(dòng)態(tài)分析,對(duì)變化過程中的相關(guān)量的準(zhǔn)確定位,是求解這類問題的主要思維方法.
二元一次不等式組所表示的平面區(qū)域,包括平面區(qū)域的形狀判斷、面積以及與平面區(qū)域有關(guān)的最值問題,簡(jiǎn)單的線性規(guī)劃模型在解決實(shí)際問題中的應(yīng)用.
【考場(chǎng)經(jīng)驗(yàn)分享】
1.解線性規(guī)劃問題的思維精髓是“數(shù)形結(jié)合”,其關(guān)鍵步驟是在圖上完成的,所以作圖應(yīng)盡可能精確,圖上操作盡可能規(guī)范,假如圖上的最優(yōu)點(diǎn)并不明顯易變時(shí),不妨將幾個(gè)有可能是最優(yōu)點(diǎn)的坐標(biāo)都求出來,然后逐一檢驗(yàn),從而得正確解.
4.線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.
需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得.
【真題再現(xiàn)】
張老師支招:
線性規(guī)劃題目不是很難,但典型例題必須掌握,以前高考題主要以截距的題型出現(xiàn),但隨著高考命題規(guī)律的,其他三中類型題一定要引起注意。
聯(lián)系客服