2017屆
西安小升初
2016屆5.28考試,“數(shù)學(xué)30分,語文30分,英語10分,科學(xué)10分,其他20分”,我們有充足的理由推測,名校本著“擇優(yōu)”原則命制的小升初考卷,數(shù)學(xué)方面一定會繼續(xù)有很大的區(qū)分度,考生們不能掉以輕心。
所以呢,今天就為大家強(qiáng)烈推薦近些年小升初數(shù)學(xué)考試中最??嫉?2類題型,其中包括:類型知識+口訣巧學(xué)+例題整理,各位家長記得為學(xué)生們收藏!
1.和差問題:
已知兩數(shù)的和與差,求這兩個(gè)數(shù)。
相關(guān)例題
已知兩數(shù)和是10,差是2,求這兩個(gè)數(shù)。
【口訣】
和加上差,越加越大;除以2,便是大的;和減去差,越減越??;除以2,便是小的。
按口訣,則
大數(shù)=(10+2)/2=6,
小數(shù)=(10-2)/2=4
2.差比問題:
相關(guān)例題
甲數(shù)比乙數(shù)大12且甲:乙=7:4,求兩數(shù)。
【口訣】
我的比你多,倍數(shù)是因果。
分子實(shí)際差,分母倍數(shù)差。
商是一倍的,乘以各自的倍數(shù),兩數(shù)便可求得。
先求一倍的量,12/(7-4)=4,
所以甲數(shù)為:4X7=28,乙數(shù)為:4X4=16。
3.年齡問題:
相關(guān)例題
小軍今年8 歲,爸爸今年34歲,幾年后,爸爸的年齡是小軍的3倍?
【口訣】
歲差不會變,同時(shí)相加減。
歲數(shù)一改變,倍數(shù)也改變。
抓住這三點(diǎn),一切都簡單。
分析
歲差不會變,今年的歲數(shù)差點(diǎn)34-8=26,
到幾年后仍然不會變。
已知差及倍數(shù),轉(zhuǎn)化為差比問題。
26/(3-1)=13,
幾年后爸爸的年齡是13X3=39歲,
小軍的年齡是13X1=13歲,所以應(yīng)該是5年后。
相關(guān)例題
姐姐今年13歲,弟弟今年9歲,當(dāng)姐弟倆歲數(shù)的和是40歲時(shí),兩人各應(yīng)該是多少歲?
分析
歲差不會變,今年的歲數(shù)差13-9=4
幾年后也不會改變。
幾年后歲數(shù)和是40,歲數(shù)差是4,
轉(zhuǎn)化為和差問題。
則幾年后,
姐姐的歲數(shù):(40+4)/2=22,
弟弟的歲數(shù):(40-4)/2=18,
所以答案是9年后。
4.和比問題:
已知整體,求部分。
相關(guān)例題
甲乙丙三數(shù)和為27,甲:乙:丙=2:3:4,求甲乙丙三數(shù)。
【口訣】
家要眾人合,分家有原則。
分母比數(shù)和,分子自己的。
和乘以比例,就是該得的。
分母比數(shù)和,即分母為:2+3+4=9;
分子自己的,則甲乙丙三數(shù)占和的比例分別為
2/9,3/9,4/9。
和乘以比例,則
甲為27X2/9=6,
乙為27X3/9=9,
丙為27X4/9=12
5.雞兔同籠問題:
相關(guān)例題
雞免同籠,有頭36 ,有腳120,求雞兔數(shù)。
【口訣】
假設(shè)全是雞,假設(shè)全是兔。
多了幾只腳,少了幾只足?
除以腳的差,便是雞兔數(shù)。
求兔時(shí),假設(shè)全是雞,
則免子數(shù)=(120-36X2)/(4-2)=24
求雞時(shí),假設(shè)全是兔,
則雞數(shù) =(4X36-120)/(4-2)=12
6.路程問題:
(1)相遇問題
相關(guān)例題
甲乙兩人從相距120千米的兩地相向而行,甲的速度為40千米/小時(shí),乙的速度為20千米/小時(shí),多少時(shí)間相遇?
【口訣】
相遇那一刻,路程全走過。
除以速度和,就把時(shí)間得。
相遇那一刻,路程全走過,即甲乙走過的路程和恰好是兩地的距離120千米。除以速度和,就把時(shí)間得,即甲乙兩人的總速度為兩人的速度之和40+20=60(千米/小時(shí)),所以相遇的時(shí)間就為120/60=2(小時(shí))
(2)追及問題
相關(guān)例題
姐弟二人從家里去鎮(zhèn)上,姐姐步行速度為3千米/小時(shí),先走2小時(shí)后,弟弟騎自行車出發(fā)速度6千米/小時(shí),幾時(shí)追上?
【口訣】
慢鳥要先飛,快的隨后追。
先走的路程,除以速度差,時(shí)間就求對。
先走的路程:3X2=6(千米)
速度的差:6-3=3(千米/小時(shí))
追上的時(shí)間:6/3=2(小時(shí))
7.濃度問題:
(1)加水稀釋
相關(guān)例題
有20千克濃度為15%的糖水,加水多少千克后,濃度變?yōu)?0%?
【口訣】
加水先求糖,糖完求糖水。
糖水減糖水,便是加水量。
加水先求糖,
原來含糖為:20X15%=3(千克)
糖完求糖水,
含3千克糖在10%濃度下應(yīng)有多少糖水,
3/10%=30(千克)
糖水減糖水,后的糖水量減去原來的糖水量,
30-20=10(千克)
(2)加糖濃化
相關(guān)例題
有20千克濃度為15%的糖水,加糖多少千克后,濃度變?yōu)?0%?
【口訣】
加糖先求水,水完求糖水。
糖水減糖水,求出便解題。
加糖先求水,
原來含水為:20X(1-15%)=17(千克)
水完求糖水,
含17千克水在20%濃度下應(yīng)有多少糖水,
17/(1-20%)=21.25(千克)
糖水減糖水,
后的糖水量再減去原來的糖水量,
21.25-20=1.25(千克)
8.工程問題:
相關(guān)例題
一項(xiàng)工程,甲單獨(dú)做4天完成,乙單獨(dú)做6天完成。甲乙同時(shí)做2天后,由乙單獨(dú)做,幾天完成?
【口訣】
工程總量設(shè)為1,1除以時(shí)間就是工作效率。
單獨(dú)做時(shí)工作效率是自己的,
一齊做時(shí)工作效率是眾人的效率和。
1減去已經(jīng)做的便是沒有做的,
沒有做的除以工作效率就是結(jié)果。
[1-(1/6+1/4)X2]/(1/6)=1(天)
9.植樹問題:
【口訣】
植樹多少棵,要問路如何?
直的減去1,圓的是結(jié)果。
相關(guān)例題
例1:在一條長為120米的馬路上植樹,間距為4米,植樹多少棵?
路是直的,則植樹為120/4-1=29(棵)。
例2:在一條長為120米的圓形花壇邊植樹,間距為4米,植樹多少棵?
路是圓的,則植樹為120/4=30(棵)
10.盈虧問題:
【口訣】
全盈全虧,大的減去小的;
一盈一虧,盈虧加在一起。
除以分配的差,
結(jié)果就是分配的東西或者是人。
相關(guān)例題
例1:小朋友分桃子,每人10個(gè)少9個(gè);每人8個(gè)多7個(gè)。求有多少小朋友多少桃子?
一盈一虧,則公式為:
(9+7)/(10-8)=8(人),
相應(yīng)桃子為8X10-9=71(個(gè))
例2:士兵背子彈。每人45發(fā)則多680發(fā);每人50發(fā)則多200發(fā),多少士兵多少子彈?
全盈問題,則大的減去小的,即公式為:
(680-200)/(50-45)=96(人),
相應(yīng)的子彈為96X50+200=5000(發(fā))。
例3:學(xué)生發(fā)書。每人10本則差90本;每人8 本則差8本,多少學(xué)生多少書?
全虧問題,則大的減去小,即公式為:
(90-8)/(10-8)=41(人),
相應(yīng)書為41X10-90=320(本)
11.余數(shù)問題:
相關(guān)例題
時(shí)鐘現(xiàn)在表示的時(shí)間是18點(diǎn)整,分針旋轉(zhuǎn)1990圈后是幾點(diǎn)鐘?
【口訣】
余數(shù)有(N-1)個(gè),
最小的是1,最大的是(N-1)。
周期性變化時(shí),不要看商,只要看余。
分析
分針旋轉(zhuǎn)一圈是1小時(shí),旋轉(zhuǎn)24圈就是時(shí)針轉(zhuǎn)1圈,也就是時(shí)針回到原位。1980/24的余數(shù)是22,所以相當(dāng)于分針向前旋轉(zhuǎn)22個(gè)圈,分針向前旋轉(zhuǎn)22個(gè)圈相當(dāng)于時(shí)針向前走22個(gè)小時(shí),時(shí)針向前走22小時(shí),也相當(dāng)于向后24-22=2個(gè)小時(shí),即相當(dāng)于時(shí)針向后拔了2小時(shí)。即時(shí)針相當(dāng)于是18-2=16(點(diǎn))
12.牛吃草問題:
【口訣】
每牛每天的吃草量假設(shè)是份數(shù)1,A頭B天的吃草量算出是幾?M頭N天的吃草量又是幾?大的減去小的,除以二者對應(yīng)的天數(shù)的差值,結(jié)果就是草的生長速率。原有的草量依此反推。
公式:A頭B天的吃草量減去B天乘以草的生長速率。未知吃草量的牛分為兩個(gè)部分:一小部分先吃新草,個(gè)數(shù)就是草的比率;有的草量除以剩余的牛數(shù)就將需要的天數(shù)求知。
相關(guān)例題
整個(gè)牧場上草長得一樣密,一樣快。27頭牛6天可以把草吃完;23頭牛9天也可以把草吃完。問21頭多少天把草吃完?
每牛每天的吃草量假設(shè)是1,則27頭牛6天的吃草量是27X6=162,23頭牛9天的吃草量是23X9=207;
大的減去小的,207-162=45;二者對應(yīng)的天數(shù)的差值,是9-6=3(天),則草的生長速率是45/3=15(牛/天);
原有的草量依此反推——
公式:A頭B天的吃草量減去B天乘以草的生長速率。
原有的草量=27X6-6X15=72(牛/天)。
將未知吃草量的牛分為兩個(gè)部分:
一小部分先吃新草,個(gè)數(shù)就是草的比率,這就是說將要求的21頭牛分為兩部分,一部分15頭牛吃新生的草;剩下的21-15=6去吃原有的草,
所求的天數(shù)為:原有的草量/分配剩下的牛=72/6=12(天)
聯(lián)系客服