中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
茶葉中γ

郜秋艷 尹杰 張金玉 陳猛 劉建軍

摘要:茶葉中γ-氨基丁酸(GABA)是一種非蛋白質(zhì)氨基酸,具有抗抑郁、降血壓、增強(qiáng)記憶力、抗癌等功效,因此受到較多學(xué)者的關(guān)注。文章對近年來茶樹中GABA的代謝機(jī)理、富集技術(shù)和GABA對人體健康作用等方面進(jìn)行綜述與展望,以期為系統(tǒng)研究茶葉中GABA和GABA茶產(chǎn)品開發(fā)提供理論依據(jù)。

關(guān)鍵詞:茶葉;γ-氨基丁酸;代謝機(jī)理;富集技術(shù);生理功能

Research Progress on the

γ-Aminobutyric Acid in Tea

GAO Qiuyan, YIN Jie, ZHANG Jinyu, CHEN Meng, LIU Jianjun*

College of Tea Science, Guizhou University, Guiyang 550025, China

Abstract: γ-Aminobutyric acid, non-protein amino acid in tea, has multiple health benefits, such as anti-depression, hypotensive action, improving memory and anti-cancer. The benefits of GABA, metabolic mechanism of GABA in tea plants and enrichment technology of GABA were reviewed in this paper. The aim of this article is provided theoretical basis for the systematic study of GABA and its application.

Keywords: tea, γ-aminobutyric acid (GABA), metabolic mechanism, accumulation, physiological role

茶(Camellia sinensis),山茶科山茶屬植物,是山茶屬植物中栽培面積最廣和經(jīng)濟(jì)效益最高的一個(gè)栽培種。茶是世界上最受歡迎的無酒精飲料之一,是非常重要的經(jīng)濟(jì)作物[1],起源于我國西南地區(qū),有文字記載的人工栽培歷史已有3 000多年[2]。根據(jù)國家統(tǒng)計(jì)局?jǐn)?shù)據(jù),2019年我國茶園面積近307萬hm2,采摘面積246萬hm2,茶葉產(chǎn)量達(dá)280萬t,干毛茶總產(chǎn)值達(dá)2 396億元[3]。茶葉中茶多酚、氨基酸、咖啡堿、茶多糖、茶黃素和γ-氨基丁酸(GABA)等成分[4],具有降血壓、抗癌、抗氧化、提高免疫力、增強(qiáng)記憶力等功能[5],深受廣大消費(fèi)者喜愛。

茶葉中GABA,是一種四碳非蛋白質(zhì)氨基酸,屬于谷氨酸衍生物,以自由態(tài)廣泛存在于真核生物和原核生物中[6]。它是茶葉的重要生物活性成分,對哺乳動(dòng)物有多重積極生理作用[7]。GABA廣泛存在于多種植物中,如豆類[8]、南瓜[9]、辣椒[10]、番茄[11]、馬鈴薯[12]等植物的種子、根莖和組織液中;在動(dòng)物體內(nèi)一般多存在于神經(jīng)組織中,是中樞神經(jīng)系統(tǒng)中主要的抑制性神經(jīng)遞質(zhì)之一[13]。前人研究表明GABA具有促進(jìn)睡眠[14]、降血壓[15]、促進(jìn)乙醇代謝[16]、抗焦慮[17]、抗抑郁[18]、抗癌[19]和增強(qiáng)肝功能[20]等生理功效。GABA對癲癇[21]和帕金森病[22]等多種精神疾病也具有一定的療效。隨著我國經(jīng)濟(jì)高速發(fā)展,人們對美好生活需求、對身心健康追求的同時(shí),GABA的保健作用一直備受重視,這些都推動(dòng)著GABA茶產(chǎn)品的研究開發(fā)與利用。本文綜述了茶葉中GABA的代謝機(jī)理和藥理功能,以及茶葉中GABA富集技術(shù)等方面的研究內(nèi)容,以期為系統(tǒng)研究茶葉中GABA及其應(yīng)用提供理論依據(jù)。

一、茶樹中GABA形成機(jī)理

前人研究已表明GABA不僅僅是植物中的一種代謝產(chǎn)物,也是一種應(yīng)激誘導(dǎo)細(xì)胞間信號分子[23],參與維持細(xì)胞溶質(zhì)pH值、滲透調(diào)節(jié)和碳氮代謝[24]等。茶葉中GABA含量較低[25],日本津志田藤二郎[26]在1987年發(fā)現(xiàn)茶樹鮮葉經(jīng)過一定時(shí)間的厭氧處理,其GABA含量增加了8.9倍,更多研究表明茶樹中GABA在生物和非生物脅迫下會(huì)快速積累,如厭氧脅迫[27]、干旱脅迫[28]、鹽脅迫[29]、酸脅迫[30]以及低溫脅迫[31]等。

研究發(fā)現(xiàn)茶樹中GABA的產(chǎn)生主要是谷氨酸(Glu)在谷氨酸脫羧酶(GAD)的催化作用下脫羧形成,該途徑稱為GABA支路,其次是多胺降解途徑[32-33]。Wu等[27]以福云6號、福鼎大白茶、龍井43和平陽特早4種茶樹鮮葉為試驗(yàn)材料,在厭氧和好氧連續(xù)處理?xiàng)l件下,進(jìn)一步探究了GABA支路和多胺(PAs)降解途徑對新鮮茶葉GABA積累的貢獻(xiàn)率,結(jié)果表明GABA的富集主要來源于第一次厭氧處理時(shí)GABA支路途徑,37%~47%的GABA來自第二次厭氧處理過程中PAs降解。

GABA在茶樹中有2條合成途徑:GABA支路和PAs降解(圖1)。

1. GABA支路

茶樹中GABA的合成主要是GABA支路:GAD將Glu催化脫羧形成GABA。代謝途徑如下:三羧酸循環(huán)(TCA)中的α-酮戊二酸經(jīng)谷氨酸脫氫酶(GDH)催化轉(zhuǎn)氨生成Glu,Glu在GAD的作用下生成GABA[34]。然后GABA和α-酮戊二酸在γ-氨基丁酸轉(zhuǎn)氨酶(GABA-T)的催化作用下,發(fā)生轉(zhuǎn)氨反應(yīng),可逆生成Glu和琥珀酸半醛(SSA),SSA在琥珀酸半醛脫氫酶(SSADH)的作用下形成琥珀酸(SA),SA又進(jìn)入三羧酸循環(huán),上述反應(yīng)和α-酮戊二酸氧化成SA的反應(yīng)一起構(gòu)成GABA支路[32,35]。部分SSA會(huì)在γ-羥丁酸脫氫酶(GHBDH)催化下形成γ-羥基丁酸(GHB)[36]。研究發(fā)現(xiàn)GABA支路中的3種關(guān)鍵酶分別為GAD、GABA-T和SSADH,其中GAD最適pH為5.8,GABA-T活性最適pH在8.6~9.0之間,SSADH最適pH在9.0~9.5之間[26,37]。Mei等[38]證實(shí)了茶葉中的3種GAD亞型,只有CsGAD1和CsGAD2具有催化活性,該研究團(tuán)隊(duì)后續(xù)實(shí)驗(yàn)進(jìn)一步揭示了CsGAD亞型的特性以及受脅迫時(shí)在茶葉中的表達(dá)量。從機(jī)理角度出發(fā),茶葉在偏酸性條件下,GABA富集效果更優(yōu)。

2. 多胺降解

多胺降解途徑在GABA支路產(chǎn)生GABA含量較低時(shí)作為輔助途徑參與GABA的合成,其貢獻(xiàn)率在30%左右。多胺降解途徑是指二胺或多胺(PAs)分別經(jīng)二胺氧化酶(DAO)和多胺氧化酶(PAO)催化產(chǎn)生γ-氨基丁醛,再經(jīng)γ-氨基丁醛脫氫酶(AMADH)脫氫生成GABA的過程,最終與GABA支路交匯后參與TCA循環(huán)代謝[39]。多胺(PAs)包括腐胺(Put)、精胺(Spm)和亞精胺(Spd),其中以腐胺作為多胺生物代謝的中心物質(zhì)[40-41],DAO和PAO是分別催化生物體內(nèi)腐胺、亞精胺和精胺降解的關(guān)鍵酶[42]。Chen等[43]研究揭示了厭氧脅迫可誘導(dǎo)多胺合成的關(guān)鍵性酶活性的提高,促進(jìn)多胺的積累,同時(shí)多胺氧化酶活性也隨之提高,通過多胺降解途徑促進(jìn)了GABA的合成與積累。目前對于多胺降解途徑的研究多集中在豆類等雙子葉植物上,有關(guān)茶樹中多胺降解途徑分子機(jī)理,尚有待進(jìn)一步深入研究。

二、茶葉中GABA富集技術(shù)

1. 種植技術(shù)

金孝芳等[44]研究揭示了6種高氨基酸茶樹品種(系)谷氨酸、天冬氨酸、精氨酸、茶氨酸和氨基酸總量顯著高于對照品種鄂茶1號,谷氨酸是生成GABA的前體物質(zhì),使得選擇高氨基酸茶樹品種生產(chǎn)高GABA茶具有現(xiàn)實(shí)意義。施加氨基酸葉面肥能夠增產(chǎn)提質(zhì),張定等[45]研究比較了谷氨酸、天冬氨酸、谷氨酰胺、苯丙胺酸、丙氨酸和甘氨酸等6種游離氨基酸不同濃度噴施茶樹葉面肥,發(fā)現(xiàn)噴施0.5%谷氨酸5 d,鮮葉真空厭氧處理8 h是提高茶樣中GABA含量的最優(yōu)方法。邵文韻[46]進(jìn)一步研究揭示了噴施葉面肥對茶葉GABA含量的影響。采用外源氨基酸葉面噴施和真空處理技術(shù)相結(jié)合的方式,比較了谷氨酸和谷氨酸鈉溶液處理對提高茶葉中GABA含量的效果,發(fā)現(xiàn)相同濃度下,兩者貢獻(xiàn)值差異不顯著。谷氨酸鈉遠(yuǎn)高于谷氨酸在水中的溶解度,試驗(yàn)結(jié)果表明噴施10%谷氨酸鈉溶液,真空處理12 h,其速溶茶粉中GABA含量可達(dá)3.8 mg/g。

2. 加工技術(shù)

已有研究表明,茶樹在高濃度CO2條件下生長,茶葉中的總氨基酸含量增加[47]。厭氧能顯著增加茶葉中GABA含量[48]。茶鮮葉浸泡后,GABA同樣能夠得到積累[49]。Sawai等[50]研究表明厭氧-好氧間歇處理的GABA富集效果優(yōu)于連續(xù)厭氧處理。沈強(qiáng)等[51]進(jìn)一步研究了厭氧-好氧間歇技術(shù)對茶葉富集GABA含量的影響。采用真空充氮和除氮充氧處理,經(jīng)過微波殺青,茶葉中GABA含量達(dá)到1.86 mg/g,結(jié)合感官審評分析表明,隨著GABA含量的提高,感官品質(zhì)隨之下降,以滋味下降最為顯著。王芳等[52]以水仙駐芽三四葉為原料,搖青3次,在每次搖青后真空厭氧1 h,通過高效液相測定茶樣中GABA含量,結(jié)果顯示武夷巖茶GABA含量高達(dá)3.179 mg/g,該研究進(jìn)一步表明不同茶樹品種加工成不同茶類,GABA含量富集結(jié)果差異較大。

3. 微生物技術(shù)

微生物發(fā)酵法一般以谷氨酸或谷氨酸鈉為底物,在谷氨酸脫羧酶的作用下發(fā)生特異性脫羧反應(yīng)生成GABA[53-54]。目前研究中,用來生產(chǎn)GABA的高安全性微生物多數(shù)為乳酸菌[55]、酵母菌[56]和短乳桿菌[57]等。李亞莉等[56]研究發(fā)現(xiàn)近平滑假絲酵母GPT-5-11以液態(tài)形式接種到普洱茶中,能夠顯著提高茶樣中GABA含量。結(jié)果表明,接種GPT-5-11菌株的普洱茶樣品GABA含量在0.305 2~1.533 5 mg/g,在37 ℃定期翻堆接種液態(tài)菌條件下,茶樣GABA含量最高達(dá)1.533 5 mg/g,達(dá)到了GABA茶的標(biāo)準(zhǔn)。Ma等[57]采用單因素試驗(yàn)和響應(yīng)面法優(yōu)化了短乳桿菌TCCC13007用于發(fā)酵生產(chǎn)GABA的條件。研究結(jié)果顯示,以干燥劑麥芽糊精含量30%,進(jìn)風(fēng)溫度130 ℃,進(jìn)料速度600 mL/h,噴霧壓力0.35 Mpa,固相質(zhì)量分?jǐn)?shù)4.5%,撞針間隔時(shí)間和撞針執(zhí)行時(shí)間均以3 s為最佳。該研究結(jié)果具有較高的統(tǒng)計(jì)意義,為綠色發(fā)酵工業(yè)化生產(chǎn)γ-氨基丁酸奠定了基礎(chǔ)。微生物技術(shù)制備GABA具有反應(yīng)條件溫和、對環(huán)境污染小、產(chǎn)量高和安全性能高等優(yōu)點(diǎn)[58],隨著生物科技的高速發(fā)展,該技術(shù)有著十分廣闊的前景。

4. 其他技術(shù)

林智等[59]研究發(fā)明了生產(chǎn)GABA茶的關(guān)鍵設(shè)備——6CY-4.0型茶鮮葉真空處理機(jī)。該設(shè)備操作簡單方便,可進(jìn)行批量生產(chǎn),所產(chǎn)GABA茶的GABA含量為2.48~6.62 mg/g,其品質(zhì)優(yōu)于日本同類產(chǎn)品。針對云南大葉種茶的特點(diǎn),郝強(qiáng)等[60]研發(fā)了設(shè)備機(jī)電一體化和PLC自動(dòng)控制真空處理機(jī),實(shí)現(xiàn)了GABA茶的清潔化規(guī)模生產(chǎn),該設(shè)備處理量大,操作簡單,成本低,能夠適應(yīng)云南茶葉生產(chǎn)的環(huán)境條件。GABA茶關(guān)鍵設(shè)備均是從GABA茶的加工原理和符合實(shí)際生產(chǎn)出發(fā),多與真空厭氧處理相結(jié)合,對推動(dòng)GABA茶的工業(yè)化生產(chǎn)具有積極作用。

三、茶葉中GABA藥理功能

1. 緩解焦慮

神經(jīng)生理醫(yī)學(xué)研究證明GABA是中樞神經(jīng)系統(tǒng)的抑制性神經(jīng)遞質(zhì)之一,可以在痛覺調(diào)制通路中抑制痛信號的傳遞[61]。歐陽俊彥等[62]研究表明GABA能夠有效緩解雄性SD大鼠焦慮情緒。通過飼喂雄性大鼠GABA,結(jié)果表明GABA能夠增加焦慮大鼠在開放臂的停留時(shí)間以及進(jìn)入開放臂的次數(shù),同時(shí)還能明顯改善焦慮大鼠的血脂代謝,緩解大鼠的焦慮狀態(tài)。研究進(jìn)一步揭示了GABA與L-茶氨酸聯(lián)合干預(yù)對CUMS誘發(fā)大鼠的抑郁癥具有一定的改善作用。周月等[63]通過CUMS法建立抑郁癥大鼠模型,高劑量組大鼠的體重、糖水偏好程度、曠場試驗(yàn)的運(yùn)動(dòng)距離和站立次數(shù)均顯著高于低劑量組和模型組,說明高劑量組GABA聯(lián)合L-茶氨酸緩解焦慮及抗抑郁作用顯著。He等[64]研究了口服GABA對情緒應(yīng)激所致焦慮行為的影響。通過測定SD大鼠額葉皮質(zhì)和血漿中NO代謝物含量,結(jié)果表明短時(shí)間內(nèi)反復(fù)口服GABA可顯著緩解應(yīng)激引起的焦慮反應(yīng),同時(shí)還呈現(xiàn)出劑量依賴性,這一結(jié)果與周月等[63]的研究有著相通之處。

2. 降低血壓

GABAA受體對心血管系統(tǒng)具有調(diào)控作用[65]。林智等[66]揭示了GABA能通過中樞神經(jīng)系統(tǒng)的調(diào)節(jié)有效促進(jìn)血管擴(kuò)張,減少去甲腎上腺素的釋放量,從而使血壓降低;GABA還能較強(qiáng)抑制血管緊張素轉(zhuǎn)換酶(ACE)的活性,減少血管緊張素Ⅱ的合成,進(jìn)而使血壓降低。Minoo等[67]通過對雄性Wistar大鼠注射(500、1 500和2 500 pmoL/100nL)GABAA受體激動(dòng)劑,通過t檢驗(yàn)比較分析病例組與對照組大鼠平均動(dòng)脈壓和心率變化,首次證明腹側(cè)被蓋區(qū)(VTA)的GABA系統(tǒng)是通過激活GABAA受體而不是GABAB受體來控制心血管系統(tǒng)。富含GABA的茶葉能使血壓降低,譚俊峰等[15]在實(shí)驗(yàn)中設(shè)置低、中、高(0.83、1.67、5.00 g/kg)3個(gè)劑量組,分別相當(dāng)于人體推薦劑量的5、10、30倍;同時(shí)設(shè)置高血壓模型對照組和正常動(dòng)物高劑量對照組;給白鼠灌胃茶湯30 d,該研究結(jié)果顯示高劑量組(5.00 g/kg)具有顯著性的降血壓效果,同時(shí)對大鼠的血壓及心率均無影響。該研究表明γ-氨基丁酸超微綠茶粉對高血壓動(dòng)物具有一定的降血壓功能。目前關(guān)于GABA茶降血壓研究雖然比較多,但是關(guān)于人體GABA攝入量的降壓標(biāo)準(zhǔn)及范圍研究仍然較少,可作為新的方向進(jìn)行后續(xù)拓展研究。

3. 治療癲癇

研究已證明癲癇是多種原因?qū)е碌哪X部神經(jīng)元高度同步化異常放電的神經(jīng)系統(tǒng)綜合征,主要特征是反復(fù)自發(fā)性發(fā)作[68]。許多研究證實(shí)GABA的缺乏會(huì)引發(fā)癲癇的發(fā)生,GABAA受體可介導(dǎo)抑制性突觸后電流從而對癲癇發(fā)作產(chǎn)生抑制作用,GABAB受體可調(diào)節(jié)神經(jīng)元突觸神經(jīng)遞質(zhì)的釋放和遲發(fā)性抑制性突觸后電位,在控制癲癇的興奮性方面起重要作用[69]。Hou等[70]通過臨床治療研究證實(shí)普洱茶及其GABA對患有不同程度癲癇病人均有一定的療效;對兒童、青少年患者及輕癥患者療效明顯,對重癥與難治性病痛患者可減輕癥狀,結(jié)合GABA使用,可減少抗癲癇藥物的用量,進(jìn)而降低藥物的副作用等。彭海峰等[71]探究了癲癇患者智能狀況與腦脊液GABA(CSF-GABA)含量的關(guān)系,發(fā)現(xiàn)癲癇患者智能障礙組腦脊液中GABA的濃度極顯著低于智能正常組,說明腦脊液中GABA的含量能在一定程度上反映癲癇患者的智力水平,該研究可以為癲癇的臨床判斷、預(yù)防和治療提供依據(jù)。

4. 抗癌功能

GABA抑制性作用是通過與其受體相結(jié)合使之激活,進(jìn)而抑制腫瘤細(xì)胞增殖。GABA受體有3種類型即GABAA、GABAB和GABAC,其中GABAA和GABAC是離子型受體,GABAB是代謝型受體[72]。胰腺癌是十分具有致命性的惡性腫瘤之一,Zhu等[73]研究結(jié)果顯示GABAB受體的表達(dá)受到抑制時(shí)會(huì)加劇胰腺癌疼痛級別,抑制microRNA-330的表達(dá)可恢復(fù)GABAB受體的表達(dá),減輕胰腺癌的疼痛,這可為胰腺癌的預(yù)后提供新的治療靶點(diǎn)。Shu等[74]進(jìn)一步揭示了GABA受體對癌癥起到抑制作用,其研究結(jié)果顯示,GABA受體激活后能夠顯著抑制結(jié)腸直腸腫瘤細(xì)胞HT29的增殖。在茶葉中,Wang等[75]研究發(fā)現(xiàn)GABA茶提取物比常規(guī)茶葉中主要兒茶素成分表沒食子兒茶素沒食子酸酯(EGCG)更具有遺傳毒性和促氧化性,GABA茶提取物與銅離子協(xié)同促使脫氧核糖核酸裂解,說明GABA茶提取物具有潛在抗癌的可能。Chuang等[76]進(jìn)一步研究發(fā)現(xiàn)在GABA茶提取物中鋅離子可作為助氧化劑來增強(qiáng)調(diào)制DNA裂解,GABA茶具有氧化和抗氧化雙重特性。這些研究和發(fā)現(xiàn)給預(yù)防和治療癌癥提供了新的途徑,為未來高含量GABA茶產(chǎn)品開發(fā)及功能研究提供了新的途徑和方向。

5. 提高記憶力

在動(dòng)物大腦中,GABAA是GABA最重要的受體,GABAergic突觸傳遞大多都由GABAA介導(dǎo)[77]。Dashniani等[78]研究分析了MS-GABAergic 損傷引起海馬谷氨酸能(Gluergic)和GABAergic受體表達(dá)的顯著變化,大鼠在訓(xùn)練后3 d內(nèi)表現(xiàn)出記憶滯留缺陷,明確了GABA對長期空間記憶具有正面影響作用。Engin等[79]研究表明Glu與GABA的代謝調(diào)節(jié)對學(xué)習(xí)記憶有著重要作用,在一定范圍內(nèi),Glu與GABA的比值升高對學(xué)習(xí)記憶有促進(jìn)作用,但比值過高時(shí)則有抑制作用。

6. 緩解肝細(xì)胞凋亡

脂多糖/D-半乳糖胺誘發(fā)的急性肝衰竭(ALF)具有較高的死亡率。Hata等[80]通過給予ALF模型C57BL/6NHsd小鼠GABA預(yù)處理,對小鼠血液和肝組織中蛋白進(jìn)行分析,結(jié)果表明GABA處理組小鼠脫氧核苷酸轉(zhuǎn)移酶dUTP缺口末端標(biāo)記陽性肝細(xì)胞和肝細(xì)胞壞死顯著減弱,caspase-3、H2AX和p38 MAPK蛋白水平降低,Jak2、STAT3、Bcl-2和Mn-SOD表達(dá)增加。GABA通過其介導(dǎo)的STAT3信號通路保護(hù)小鼠免于急性肝衰竭。該研究推測預(yù)先給予GABA可能是移植前優(yōu)化邊緣供體肝臟的有效方法。Shilpa等[81]進(jìn)一步研究發(fā)現(xiàn)GABAB受體和5-羥色胺2A受體(5-hydroxy tryptamine 2A receptors)偶聯(lián)信號元件在GABA和5-羥色胺(5-HT)殼聚糖納米粒誘導(dǎo)肝細(xì)胞增殖中起重要作用,改善了肝再生過程中的細(xì)胞信號機(jī)制, 促進(jìn)肝細(xì)胞快速增殖并減少損傷。Liu等[82]發(fā)現(xiàn)抑制甜菜堿/γ-氨基丁酸轉(zhuǎn)運(yùn)蛋白-1(BGT-1)的表達(dá),可減少小鼠肝臟中的細(xì)胞凋亡,BGT-1是預(yù)防和治療肝細(xì)胞凋亡相關(guān)疾?。ɡ鏏LF)有希望的候選藥物靶標(biāo)。這些研究均表明GABA對于治療肝臟疾病具有重要意義。

7. 治療糖尿病

糖尿病的發(fā)病率在世界范圍內(nèi)急劇上升,現(xiàn)在被認(rèn)為是人類健康的主要威脅之一,其特征是胰腺細(xì)胞功能失調(diào),胰島素分泌或作用缺陷,從而導(dǎo)致慢性高血糖。γ-氨基丁酸對糖尿病的治療作用已得到廣泛研究。Tian等[83]研究發(fā)現(xiàn),γ-氨基丁酸可以作為早期Ⅰ型糖尿病治療劑,抑制Ⅰ型糖尿病的炎癥反應(yīng)。Wang等[84]證明了GABA可以減緩應(yīng)激誘導(dǎo)的胰島β細(xì)胞凋亡,對胰島炎癥和全身炎癥具有抑制作用。Abdelazez等[85]認(rèn)為短乳桿菌LAB菌株產(chǎn)生的GABA可應(yīng)用于食品和藥物,實(shí)驗(yàn)結(jié)果表明能夠顯著降低小鼠血糖和胰島素水平,可用于降低Ⅰ型糖尿病的發(fā)病率。Cherng等[86]的研究再次證明了GABA茶能顯著降低大鼠血糖水平,抑制鏈脲佐菌素(STZ)誘導(dǎo)的糖尿病大鼠大腦皮質(zhì)細(xì)胞凋亡和自噬,緩解慢性炎癥。

8. 其他功能

除了上述生理功能外,Kanehira等[87]研究發(fā)現(xiàn)飲用GABA飲料,可有效緩解疲勞,提高工作效率。GABA紅茶[88]和GABA毛葉茶[89]均能提高睡眠質(zhì)量。GABA還具有鎮(zhèn)痛作用[90]、抗氧化[91]、抗衰老[92]、調(diào)控生殖[93]和治療哮喘[94]等多種生理功能。目前,GABA的保健功能越來越受研究學(xué)者的重視,與之相關(guān)的研究越來越多,但是大多數(shù)試驗(yàn)仍然是建立在模型動(dòng)物上。

四、茶葉中GABA的開發(fā)展望

目前GABA在植物中的形成機(jī)理已比較明確,但有關(guān)茶樹中GABA形成機(jī)理尚未有較為系統(tǒng)的研究,綜合基因組學(xué)、代謝組學(xué)和遺傳學(xué)等多種學(xué)科,深入探討GABA在茶葉中形成機(jī)制應(yīng)該是將來的一個(gè)重要研究方向。

GABA對人體健康和保健具有積極作用,市面上已經(jīng)有富含GABA的綠茶[95]、普洱茶、紅茶以及烏龍茶[96]在生產(chǎn)銷售,其產(chǎn)品受到了一些消費(fèi)者特別是高血壓患者的青睞。

近幾年關(guān)于GABA茶的抗抑郁、抗癌和抗糖尿病等其他功能相繼被發(fā)現(xiàn),GABA與其相關(guān)藥物配合使用,不僅能夠擴(kuò)大藥物治療功效的同時(shí),還能有效降低藥物的使用量,減輕其副作用,為預(yù)防和治療癌癥、糖尿病等疾病提供了新途徑,可作為未來的研究方向。開發(fā)GABA茶的特有功能,如果能夠得到更大限度的產(chǎn)品轉(zhuǎn)化,在GABA的眾多功能研究的基礎(chǔ)上,挖掘GABA茶的功能性,開發(fā)天然功能性產(chǎn)品,符合當(dāng)今保健行業(yè)的發(fā)展趨勢,具有廣闊的市場發(fā)展前景,同時(shí)也對人類健康具有更加重大的意義。

在生產(chǎn)技術(shù)上,經(jīng)厭氧、浸泡等處理加工而成的GABA茶容易產(chǎn)生不愉快的氣味以及產(chǎn)生紅梗、紅葉,影響成品茶品質(zhì),所以提升GABA茶的感官品質(zhì),工藝改進(jìn)、生產(chǎn)設(shè)備研發(fā),是值得以后探索研究的創(chuàng)新課題。

目前我國許多產(chǎn)茶區(qū)主要采摘春茶,夏秋茶利用率較低,而安吉白茶、黃金芽等高氨基酸茶樹品種,不僅春茶氨基酸含量較高、內(nèi)含成分豐富,其夏秋茶品質(zhì)也十分出色。如若能充分利用夏秋茶資源,采用合適的GABA富集方法,開發(fā)富含GABA天然功能性的茶產(chǎn)品,不僅可以提高我國夏秋茶產(chǎn)品的附加值,延長茶產(chǎn)業(yè)鏈,開發(fā)茶產(chǎn)業(yè)新的經(jīng)濟(jì)增長點(diǎn),還可以促進(jìn)我國茶產(chǎn)業(yè)的可持續(xù)發(fā)展,具有重大的經(jīng)濟(jì)價(jià)值和社會(huì)意義。

參考文獻(xiàn)

[1] MAHDAVI-ROSHAN M, SALARI A, GHORBANI Z, et al. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and meta-analysis[J]. Journal of Complementary Therapies in Medicine, 2020, 51: 102430.

[2] 駱耀平, 須海榮, 羅軍武, 等. 茶樹栽培學(xué)[M]. 北京: 中國農(nóng)業(yè)出版社, 2015: 1-5.

[3] 陳宗懋, 劉仲華, 楊亞軍, 等. 2019年中國茶葉科技進(jìn)展[J]. 中國茶葉, 2020, 42(5): 1-12, 20.

[4] KE L J, XU W, GAO J N, et al. Isolation and characterization of   thermo-tolerant polyphenol oxidases in a black tea infusion[J]. Food   Control, 2021, 119: 107465.

[5] CHEN D, CHEN G J, SUN Y, et al. Physiological genetics, chemical  composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review[J]. Food Research International, 2020, 137:   109584.

[6] TAMBINI M D, YAO W, D'ADAMIO L. Facilitation of glutamate, but not GABA, release in familial alzheimer's APP mutant knock-in rats with increased β-cleavage of APP[J]. Aging Cell, 2019, 18(6): 13033.

[7] XU N, WEI L, LIU J. Biotechnological advances and perspectives of gamma-aminobutyric acid production[J]. World Journal of Microbiology and Biotechnology, 2017, 33(64): 1-11.

[8] VANN K, TECHAPARIN A, APIRAKSAKORN J. Beans germination as a potential tool for GABA-enriched tofu production[J]. Journal of Food Science and Technology, 2020 (1): 1-8.

[9] NEJAD-ALIMORADI F, NASIBI F, KALANTARI K M. 24-epibrassinolide pre-treatment alleviates the salt-induced deleterious effects in medicinal pumpkin (Cucurbita pepo) by enhancement of GABA content and enzymatic antioxidants[J]. South African Journal of Botany, 2019, 124: 111-117.

[10] LI Y F, FAN Y, MA Y, et al. Effects of exogenous γ-aminobutyric  acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress[J]. Journal of Plant Growth Regulation, 2017, 36(2): 436-449.

[11] MEHER H C, SINGH G, CHAWLA G. Metabolic alternations of  amino acids, γ-aminobutyric acid, and salicylic acid in solanum lycopersicum (L.) following preplanting seedling spray with salicylic   acid[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12236-12248.

[12] 張夢麗, 楊志偉. 響應(yīng)面法優(yōu)化微波富集馬鈴薯γ-氨基丁酸(GABA)工藝[J]. 食品科技, 2019, 44(5): 72-78.

[13] MALOMOUZH A, ILYIN V, NIKOLSKY E, et al. Components of  the GABAergic signaling in the peripheral cholinergic synapses of   vertebrates: A review [J]. Amino Acids, 2019, 51 (2): 1093-1102.

[14] LIU K, KIM J, KIM D W, et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep[J]. Nature, 2017(548): 582-587.

[15] 譚俊峰, 林智, 彭群華, 等. γ-氨基丁酸超微綠茶粉輔助降血壓功能研究[J]. 茶葉科學(xué), 2012, 32(5): 461-464.

[16] HSUAN L, HSUN-HSUN L, JUN-KAI C, et al. Involvement of  nmda receptors, nitric oxide and gaba in rostral ventrolateral medulla   in acute ethanol-induced cardiovascular responses in rats[J].  Alcoholism: Clinical and Experimental Research, 2018, 42(8):  1418-1430.

[17] ZHANG S L, ZHU J G, LI J, et al. Leonurine protects ischemia-induced brain injury via modulating SOD, MDA and GABA levels[J]. Frontiers of Agricultural Science and Engineering, 2019, 6(2): 197-205.

[18] NAGUY AHMED. Brexanolone and postpartum depression: what    does it have to do with GABA[J]. Archives of Women's Mental Health, 2019, 22(6): 833-834.

[19] SONG L, DU A, XIONG Y, et al. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells[J]. Tumor Biology, 2016, 37(11): 14885-14894.

[20] WANG S, ZHANG L, LIU C, et al. Protective roles of hepatic GABA signaling in liver injury[J]. International Journal of Physiology Pathophysiology and Pharmacology, 2017, 9(5): 153-156.

[21] HERNANDEZMARTINEZ D, ROCHA L, MARTINEZ J, et al.  Time course of the effect of status epilepticus induced in the deve- loping rat on γ-amino butyric acid and glutamate cerebellar concentration[J]. Neurologia, 2016, 33(9): 577-582.

[22] LOZOVAYA N, EFTEKHARI S, CLOAREC R, et al. Gabaergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in parkinson disease[J]. Nature Communications, 2018, 9(1): 294-307.

[23] Bouché N, Fromm H. GABA in plants: just a metabolite?[J].   Trends in  Plant Science, 2004, 9(3): 110-115.

[24]  SHELP B J, BOWN A W, MCLEAN M D, et al. Metabolism and  functions of γ -aminobutyric acid[J]. Trends in Plant Science, 1999,   4(11): 446-452.

[25] 馬圣洲, 吳琴燕, 楊敬輝, 等. 江蘇丘陵地區(qū)γ-氨基丁酸茶適制性品種篩選[J]. 江蘇農(nóng)業(yè)科學(xué), 2013, 41(8): 272-274.

[26] TSUSHIDA T, MURAI T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions[J]. Agricultural and Biological Chemistry, 1987, 51(11): 2865-2871.

[27] WU Q Y, MA S Z, ZHANG W W, et al. Accumulating pathways of  γ-aminobutyric acid during anaerobic and aerobic sequential    incubation in fresh tea leaves[J]. Food Chemistry, 2017, 240:  1081-1086.

[28] KRISHNAN S, LASKOWSKI K, SHUKLA V, et al. Mitigation of drought stress damage by exogenous application of non-protein amino acid γ-aminobutyric acid on perennial ryegrass[J]. Journal of American Society for Horticultural Science, 2013, 138(5): 358-366.

[29] SHI S Q, SHI Z, JIANG Z P, et al. Effects of exogenous GABA on gene expression of caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production[J]. Plant Cell and Environment, 2010, 33(2): 149-162.

[30] MEI X, CHEN Y, ZHANG L, et al. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses[J]. Scientific Reports, 2016, 6(1): 23685.

[31] WANGY H, XIONG F, NONG S H, et al. Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress[J]. Scientific Reports, 2020, 10(1): 45-58.

[32] LIAO J, WU X, XING Z, et al. γ-Aminobutyric acid (GABA)    accumulation in tea (Camellia sinensis L.) through the GABA  shunt and polyamine degradation pathways under anoxia[J]. Journal of Agricultural and Food Chemistry, 2017 (65): 3013-3018.

[33]  PODLESAKOVA K, UGENA L, SPICHAL L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. New Biotechnology, 2019, 48: 53-65.

[34] FAIT A, FROMM H, WALTER D, et al. Highway or byway: the  metabolic role of the GABA shunt in plants[J]. Trends in Plant  Science, 2008, 13(1): 14-19.

[35] JI J, SHI Z, XIE T T, et al. Responses of GABA shunt coupled with   carbon and nitrogen metabolism in poplar under NaCl and CdCl2    stresses[J]. Ecotoxicology and Environmental Safety, 2020, 193:    110322.

[36] RAVASZ D, KACSO G, FODOR V, et al. Catabolism of GABA,  succinic semialdehyde or gamma-hydroxybutyrate through the  GABA shunt impair mitochondrial substrate-level phosphorylation[J]. Neurochemistry International, 2017, 109: 41-53.

[37] Kowalski A, ?ylińska L, Boczek T, et al. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform[J]. Biochemical and Biophysical Research Communications, 2011, 411(4): 815-820.

[38] MEI X, XU X L, YANG Z Y, et al. Characterization of two tea glu-  tamate decarboxylase isoforms involved in GABA production[J].   Food Chemistry, 2020, 305: 125440. https://doi.org/10.1016/j. foodchem.2019.125440.

[39] SHELP B J, BOZZO G G, TROBACHER C P, et al. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress[J]. Plant Science, 2012, 193/194: 130-135.

[40] PALMA F, CARVAJAL F, RAMOSJ M, et al. Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: Contribution of GABA shunt and other related nitrogen metabolites[J]. Postharvest Biology and Technology, 2015, 99: 134-140.

[41] GROPPA M D, BENAVIDES M P. Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34(1): 35-45.

[42] WIMALASEKERA R, TEBARTZ F, Scherer G F E, et al. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses[J]. Plant Science, 2011, 181(5): 593-603.

[43] CHEN Q, LI M S, DING W, et al. Effects of high N2/CO2 in package treatment on polyamine-derived 4-Aminobutyrate (GABA)    biosynthesis in cold-stored white mushrooms (Agaricus bisporus)[J]. Postharvest Biology and Technology, 2020, 162: 111093.

[44] 金孝芳, 馬林龍, 劉艷麗, 等. 6個(gè)高氨基酸茶樹品種(系)主要生化成分分析[J]. 茶葉學(xué)報(bào), 2017, 58(2): 58-62.

[45] 張定, 湯茶琴, 黎星輝, 等. 葉面噴施氨基酸對茶葉中γ-氨基丁酸含量的影響[J]. 茶葉科學(xué), 2006, 26(4): 237-242.

[46] 邵文韻. 提高茶葉γ-氨基丁酸含量的方法優(yōu)化及其在速溶茶產(chǎn)品開發(fā)中的應(yīng)用[D]. 杭州: 浙江大學(xué), 2014.

[47] LI X, ZHANG L, AHAMMED G J, et al. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. [J]. Scientific Reports, 2017, 7(1): 7937.

[48] DAI W D, XIE D C, LIN Z Y, et al. A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA)  tea[J]. LWT-Food Science and Technology, 2020, 126: 109313.

[49] 廖明星, 顧振新. 采后茶鮮葉在浸水條件下γ-氨基丁酸的富集[J]. 食品工業(yè)科技, 2011, 32(4): 143-144.

[50] SAWAI Y, YAMAGUCHI Y, MIYAMA D, et al. Cycling treatment of anaerobic and aerobic incubation increases the content of gamma-aminobutyric acid in tea shoots[J]. Amino Acids, 2001, 20(3): 331-334.

[51] 沈強(qiáng), 許凡凡, 張小琴, 等. 真空厭氧間歇技術(shù)富集福鼎大白茶茶鮮葉GABA的參數(shù)優(yōu)化[J]. 食品工業(yè)科技, 2018, 39(11): 156-160.

[52] 王芳, 陳百文. 高γ-氨基丁酸巖茶加工工藝研究[J]. 茶葉通訊, 2019, 46(1): 32-37.

[53] JORGE J M, LEGGEWIE C, WENDISCH V F. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose[J]. Amino Acids, 2016, 48(11): 2519-2531.

[54]  PARK J Y, JEONG S J, KIM J H. Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae[J]. Biotechnology Letters, 2014, 36(9): 1791-1799.

[55] GARZON A G, VELDE F V D, DRAGO S R. Gastrointestinal and   colonic in vitro bioaccessibility of γ-aminobutiric acid (GABA) and    phenolic compounds from novel fermented sorghum food[J]. LWT-   Food Science and Technology, 2020, 130: 109664.

[56] 李亞莉, 魏珍珍, 周紅杰. 株產(chǎn)GABA酵母菌在普洱茶發(fā)酵中的應(yīng)用[C]//中國科學(xué)技術(shù)協(xié)會(huì), 貴州省人民政府. 第十五屆中國科協(xié)年會(huì)第20分會(huì)場: 科技創(chuàng)新與茶產(chǎn)業(yè)發(fā)展論壇論文集. 2013: 317-323.

[57] MA W, ZHANG J, SHU L, et al. Optimization of spray drying    conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth[J]. Biochemical Engineering Journal, 2020, 156: 107499.

[58] CARLA C C. Whole cell biocatalysts: essential workers from nature to the industry[J]. Microb Biotechnol, 2017, 10(2): 250-263.

[59] 林智, 楊鐘鳴, 權(quán)啟愛. γ-氨基丁酸茶加工工藝及關(guān)鍵設(shè)備[J]. 中國茶葉, 2007, 29(4): 16-17.

[60] 郝強(qiáng), 李亞莉, 吳紹帥, 等. γ-氨基丁酸茶加工關(guān)鍵設(shè)備的研究與應(yīng)用[J]. 食品與機(jī)械, 2012, 28(1): 119-121.

[61] BELTRáN GONZáLEZ A N, LóPEZ PAZOS M I, CALVO D J.  Reactive oxygen species in the regulation of the GABA mediated inhibitory neurotransmission[J]. Neuroscience, 2020, 439: 137-145.

[62] 歐陽俊彥, 胡卓炎, 褚玥, 等. γ-氨基丁酸對情緒應(yīng)激大鼠血脂的影響[J]. 營養(yǎng)學(xué)報(bào), 2013, 35(3): 241-245.

[63] 周月, 付敏, 劉歡. 茶氨酸聯(lián)合γ-氨基丁酸改善CUMS大鼠抑郁癥狀的研究[J]. 食品工業(yè)科技, 2020, 41(2): 292-297, 306.

[64] HE Y G, OUYANG J Y, HU Z Y, et al. Intervention mechanism of repeated oral GABA administration on anxiety-like behaviors induced by emotional stress in rats[J]. Psychiatry Research, 2019, 271: 649-657.

[65] PASANDI H, ABBASPOOR S, SHAFEI M N. et al. GABAA receptor in the pedunculopontine tegmental (PPT) nucleus: Effects on cardiovascular system[J]. Pharmacological Reports, 2018, 70(5): 1001-1009.

[66] 林智, 大森正司. γ-氨基丁酸茶成分對大鼠血管緊張素I轉(zhuǎn)換酶(ACE) 活性的影響[J]. 茶葉科學(xué), 2002, 22(1): 43-46.

[67] MINOO R, FATHMEH K, MASOUMEH H, et al. Evaluation of GABA receptors of ventral tegmental area in cardiovascular responses in rat[J]. Iranian Journal of Medical Sciences, 2014, 39(4): 374-381.

[68] SILVENNOINEN K, BALESTRINI S, ROTHWELL J C, et al.    Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy[J]. Epilepsia, 2020, 61(9): 1-22.

[69] LIU M, JIANG L J, WEN M, et al. Microglia depletion exacerbates acute seizures and hippocampal neuronal degeneration in mouse models of epilepsy[J/OL]. Journal of Cell Physiology, 2020. https://doi.org/10.1152/ajpcell.00205.2020.

[70] HOU C W. Pu-erh tea and GABA attenuates oxidative stress in    kainic acid-induced status epilepticus[J]. Journal of Biomedical  Science, 2011, 18(1): 75-85.

[71] 彭海峰, 周仕鈞, 唐杭軍, 等. 癲癇患者智能狀況與腦脊液γ-氨基丁酸的相關(guān)性研究[J]. 中國醫(yī)師雜志, 2003(10): 1350-1352.

[72] 丁一, 艾華. γ-氨基丁酸與人體健康的關(guān)系[J]. 中國臨床保健雜志, 2012, 15(1): 100-103.

[73] ZHU M, WANG L Q, ZHU J, et al. MicroRNA-330 directs down-   regulation of the GABA(B)R2 in the pathogenesis of pancreatic cancer pain[J]. Journal of Molecular Neuroscience, 2020, 70: 1541- 1551.

[74] SHU Q, LIU J, LIU X, et al. GABA B R/GSK-3β/NF-κB signaling pathway regulates the proliferation of colorectal cancer cells[J]. Cancer Medicine, 2016, 5(6): 1259-1267.

[75] WANG H F, CHUANG S M, HSIAO C C, et al. A synergistic effect of GABA tea and copper(II) on DNA breakage in human peripheral lymphocytes[J]. Pergamon, 2011, 49(4): 955-962.

[76] CHUANG S M, WANG H F, HSIAO C C, et al. Zinc ion enhances gaba tea-mediated oxidative DNA damage[J]. Journal of Agricultural and Food Chemistry, 2012, 60(6): 1586-1594.

[77] MCGREGOR M, HAMILTON J, HAJNAL A, et al. Roux-en-Y  gastric bypass increases GABA-A receptor levels in regions of the rat   brain involved in object recognition memory and perceptual acuity[J]. Physiology and Behavior, 2020, 224: 113053.

[78] DASHNIANI M G, BURJANADZE M A, CHKHIKVISHVILI N C, et al. Modulation of spatial memory and expression of hippocampal neurotransmitter receptors by selective lesion of medial septal cholinergic and GABAergic neurons[J]. Experimental Brain Research, 2020, 238: 2385-2397.

[79] ENGIN E, BENHAM R S, RUDOLPH U. An emerging circuit pharmacology of GABAA receptors[J]. Trends in Pharmacological Sciences, 2018, 39(8): 710-732.

[80] HATA T, REHMAN F, HORI T, et al. GABA, γ-Aminobutyric acid, protects against severe liver injury[J]. Journal of Surgical Research, 2019, 236: 172-183.

[81] SHILPA J, PRETTY M A, ANITHA M, et al. Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors functional regulation during enhanced liver cell proliferation by GABA and 5-HT chitosan nanoparticles treatment[J]. European Journal of Pharmacology, 2013, 715(1/2/3): 154-163.

[82] LIU Z Z, LI Q, SHEN R L, et al. Betaine/GABA transporter-1 (BGT-1) deficiency in mouse prevents acute liver failure in vivo and hepatocytes apoptosis in vitro[J]. Biochimica et Biophysica Acta (BBA) -Molecular Basis of Disease, 2020, 1866(3): 165634.

[83] TIAN J, LU Y, ZHANG H, et al. Aminobutyric acid inhibits T cell autoimmunity and the development of in-flammatory responses in a mouse type 1 diabetes model[J]. Journal of Immunology, 2014, 173(8): 5298-5304.

[84] WANG Q H, PRUDHOMME G J, WAN Y. GABAergic system in  the endocrine pancreas: A new target for diabetes treatment[J].  Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2015, 8: 79-87.

[85] ABDELAZEZ A, ABDELMOTAAL H, EVIVIE S E, et al. Screen- ing potential probiotic characteristics of lactobacillus brevis strains in vitro and intervention effect on type I diabetes in vivo[J]. BioMed Research International, 2018, 9: 1-20.

[86] CHERNG S H, HUANG C Y, KUO W W, et al. GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated  apoptosis in streptozotocin-induced diabetic rats[J]. Food and Chemical Toxicology, 2014, 65: 90-96.

[87] KANEHIRA T, NAKAMURA Y, NAKAMURA K, et al. Relieving occupational fatigue by consumption of a beverage containing γ-aminobutyric acid[J]. Journal of Nutritional Science and Vitaminology, 2011, 57(1): 9-15.

[88] ZHAO W F, LI Y, MA W, et al. A study on quality components and sleep-promoting effects of GABA black tea[J]. Food and Function, 2015, 6(10): 3393-3398.

[89] WU C L, HUANG Y H, LAI X F, et al. Study on quality components and sleep-promoting effect of GABA Maoyecha tea[J]. Journal of Functional Foods, 2014(7): 180-190.

[90] LI C J, WANG X, ZHANG G F, et al. Downregulation of microRNA-29c reduces pain after child delivery by activating the oxytocin-GABA pathway[J]. Journal of Molecular Medicine Reports, 2020, 22(3): 1921-1931.

[91] ZHU Z H, SHI Z G, XIE C L, et al. A novel mechanism of Gamma-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative injury[J]. Journal of Comparative Biochemistry and Physiology, 2019, 217: 68-75.

[92] HERMANS L, LEUNISSEN I, PAUWELS L, et al. Brain GABA levels are associated with inhibitory control deficits in older adults[J]. Journal of Neuroscience, 2018, 38(36): 7844-7851.

[93] 司文宇, 姚郅璆, 方富貴. γ-氨基丁酸調(diào)控雌性動(dòng)物生殖的研究進(jìn)展[J]. 生物學(xué)雜志, 2019, 36(5): 89-91.

[94] FORKUO G S, NIEMAN A N, YUAN N Y, et al. Alleviation of multiple asthmatic pathologic features with orally svailable and subtype selective GABAA receptor modulators[J]. Molecular Pharmaceutics, 2017, 14(6): 2088-2098.

[95] 屠鈺, 李無雙, 朗文成, 等. 串聯(lián)質(zhì)譜法實(shí)時(shí)直接測定茶葉中γ-氨基丁酸含量[J]. 分析化學(xué), 2020, 48(9): 1252-1259.

[96] SU Y S, LIN Y P, CHENG F C. et al. In-capillary derivatization and stacking electrophoretic analysis of γ-aminobutyric acid and alanine in tea samples to redeem the detection after dilution to decrease matrix interference[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 120-126.

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
γ-氨基丁酸 γ-aminobutyric acid
ADHD可能的膳食補(bǔ)充劑——GABA
白茶優(yōu)勢其它茶無法媲美(告訴你喝白茶的好處)
普洱茶降血壓“新說”——GABA(γ-氨基丁酸)
為什么晚上更適合喝熟茶
γ氨基丁酸
更多類似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服