趙寧,傅深
上海交通大學(xué)附屬第六人民醫(yī)院
復(fù)旦大學(xué)附屬腫瘤醫(yī)院放療中心
上海市質(zhì)子重離子醫(yī)院放療科
復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系
腫瘤干細(xì)胞理論認(rèn)為腫瘤起源于小部分具有干細(xì)胞特性的腫瘤細(xì)胞。乳腺癌干細(xì)胞是乳腺癌細(xì)胞中極少數(shù)具有自我更新、多向分化潛能和高致瘤性的細(xì)胞亞群,與乳腺癌復(fù)發(fā)、侵襲轉(zhuǎn)移、放化療抵抗及上皮間質(zhì)轉(zhuǎn)化等密切相關(guān)。就近年來(lái)乳腺癌干細(xì)胞的研究進(jìn)展予以綜述。
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81272506);上海市科委基金項(xiàng)目(12JCl407400);上海交通大學(xué)醫(yī)工交叉研究基金重點(diǎn)項(xiàng)目(YG2012ZD02)。
原文參見(jiàn):中國(guó)癌癥雜志. 2016;26(8):699-703.
乳腺癌是全球女性最常見(jiàn)的惡性腫瘤之一,嚴(yán)重威脅著女性健康。早期乳腺癌患者經(jīng)過(guò)嚴(yán)格治療后仍有部分發(fā)生復(fù)發(fā)轉(zhuǎn)移【1】。腫瘤干細(xì)胞(CSC)理論認(rèn)為,腫瘤組織中極小部分的CSC是腫瘤起源、復(fù)發(fā)和轉(zhuǎn)移的根源。乳腺癌干細(xì)胞(BCSC)存在不同的分子標(biāo)志物,即具有不同的表型。乳腺癌是一類在分子水平上具有高度異質(zhì)性的惡性腫瘤,不同分子亞型的乳腺癌中BCSC表型及所占比例各不相同,從而造成它們?cè)谇忠u、轉(zhuǎn)移和預(yù)后等方面存在差異。因此,闡明不同分子亞型中BCSC的表型及其調(diào)控機(jī)制不但可以揭示乳腺癌的發(fā)病機(jī)制,還將為分子靶向治療及預(yù)后判斷提供新的視角。本文就近期不同表型的BCSC相關(guān)研究進(jìn)展及其臨床應(yīng)用進(jìn)行綜述。
1 BCSC的發(fā)現(xiàn)
2003年Al-Hajj等【2】首次分離出少數(shù)具有CD44陽(yáng)性/CD24陰性/低表達(dá)/Lin陰性表型的細(xì)胞群,只需要少量的該細(xì)胞即可在聯(lián)合重癥免疫缺陷小鼠中成瘤,并可連續(xù)傳代。此結(jié)果證實(shí)了BCSC的存在,開(kāi)創(chuàng)了研究BCSC的先河。
2 BCSC的標(biāo)志物
不同類型腫瘤的CSC表面標(biāo)志物存在差異,借助表面標(biāo)志物可以分選、鑒定出BCSC。目前已發(fā)現(xiàn)多種BCSC標(biāo)志物,其中對(duì)ALDH1、CD44和CD24的研究最為廣泛,但特異性的標(biāo)志物還有待進(jìn)一步研究。
2.1 乙醛氧化脫氫酶1(ALDH1)
ALDH1目前被公認(rèn)為是BCSC的標(biāo)志物之一,是一種在細(xì)胞內(nèi)催化乙醛氧化為乙酸的細(xì)胞質(zhì)溶質(zhì)酶,在干細(xì)胞分化早期催化視黃醇氧化成視黃酸,是組織中正常干細(xì)胞生長(zhǎng)、分化所必需的。ALDH1在白血病和其他實(shí)體腫瘤(包括乳腺癌)的CSC群中活性增加,可作為多種CSC的通用標(biāo)志物。2007年,Cheung等【3】首次從急性粒細(xì)胞白血病患者的腫瘤細(xì)胞中分離出ALDH1陽(yáng)性的細(xì)胞,并證實(shí)該細(xì)胞群具有CSC的特性。有研究發(fā)現(xiàn),在胚胎性橫紋肌肉瘤(eRMS)中,ALDH1高表達(dá)的細(xì)胞群具有CSC的特性,表明ALDH1可能是eRMS中CSC的潛在標(biāo)志物【4】。Ginestier等【5】首次發(fā)現(xiàn)乳腺癌組織中ALDH1陽(yáng)性細(xì)胞占乳腺癌細(xì)胞總數(shù)的5%,并進(jìn)行體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),ALDH1陽(yáng)性的BCSC具有強(qiáng)致瘤性,500個(gè)ALDH1陽(yáng)性的BCSC即可成瘤,而即使50000個(gè)ALDH1陰性的BCSC也無(wú)法成瘤。
ALDH1具有19種亞型,主要包括ALDH1 A1、ALDH1 A2、ALDH1 A3、ALDH1 B1、ALDH1 L1和ALDH1 L2。但目前對(duì)細(xì)胞內(nèi)ALDH1的催化活性發(fā)揮主要作用的亞型仍不確定。Wu等【6】研究表明,ALDH1 A1的mRNA高表達(dá)的乳腺癌患者總生存率較低,ALDH1 A2與ALDH1 L1的mRNA高表達(dá)者總生存率較高,但未發(fā)現(xiàn)ALDH1 A3與ALDH1 B1的mRNA高表達(dá)與總生存率的關(guān)系,充分說(shuō)明ALDH1 A1是ALDH1亞型中唯一可提示乳腺癌患者預(yù)后差的標(biāo)志物,ALDH1 A1可能是乳腺癌中決定ALDH1活性的主要亞型。但Marcato等【7】研究卻發(fā)現(xiàn)ALDH1 A3亞型而不是ALDH1 A1,對(duì)ALDH的活性起主要作用,并與腫瘤的分期、分級(jí)及轉(zhuǎn)移顯著相關(guān)。
2.2 CD44和CD24
跨膜蛋白CD44和CD24是最早被發(fā)現(xiàn)的BCSC標(biāo)志物,目前發(fā)現(xiàn)CD44陽(yáng)性/CD24陰性/低表達(dá)只作為BCSC的標(biāo)志物,具有組織特異性。CD44是細(xì)胞外基質(zhì)中透明質(zhì)酸和骨橋蛋白的膜表面受體,介導(dǎo)細(xì)胞與細(xì)胞、細(xì)胞與間質(zhì)之間的相互作用。Al-Hajj等【2】進(jìn)行的體內(nèi)實(shí)驗(yàn)顯示,CD44陽(yáng)性/CD24陰性/Lin陰性細(xì)胞具有更高的致瘤能力,形成的腫瘤能夠在小鼠中連續(xù)傳代并產(chǎn)生具有同樣致瘤能力的異質(zhì)性細(xì)胞,說(shuō)明CD44陽(yáng)性/CD24陰性/Lin陰性細(xì)胞具有CSC的特性。遂將CD44陽(yáng)性/CD24陰性/低表達(dá)/Lin陰性表型的腫瘤細(xì)胞亞群鑒定為BCSC。Ginestier等【5】研究發(fā)現(xiàn),BCSC中ALDH1陽(yáng)性與CD44陽(yáng)性/CD24陰性/低表達(dá)少量重合,但只占1.16%或更少。只需20個(gè)ALDH1陽(yáng)性/CD44陽(yáng)性/CD24陰性/低表達(dá)的BCSC即可成瘤,具有高致瘤性。而ALDH1陰性/CD44陽(yáng)性/CD24陰性/低表達(dá)沒(méi)有致瘤性,提示CD44陽(yáng)性/CD24陰性/低表達(dá)亞群是由BCSC和非BCSC組成的具有異質(zhì)性的細(xì)胞群。兩種標(biāo)志物的互補(bǔ)檢測(cè)純化了“癌干細(xì)胞群”,提示通過(guò)聯(lián)合多個(gè)BCSC標(biāo)志物分選得到的細(xì)胞群更加具有“干樣”特性。
此外,研究發(fā)現(xiàn)整合素家族的CD29、CD49f、CD61,蛋白分子CD55、CD90、CD133、CXCR4、ABCG2和轉(zhuǎn)錄因子EZH2、Oct4、Nanog、Sox2、FOXC2均可能是有重要意義的BCSC候選標(biāo)志物。
3 BCSC的表型與乳腺癌各分子亞型、臨床病理特征
乳腺癌根據(jù)基因表達(dá)譜的差異分為管腔A型、管腔B型、HER2過(guò)表達(dá)型、基底細(xì)胞樣型和正常乳腺樣型5種基因亞型。不同基因亞型的乳腺癌在免疫表型和臨床病理特征上的顯著差異可能起源于不同表型的BCSC,并且BCSC表型在不同基因亞型的乳腺癌中呈差異性分布。目前研究較多的BCSC表型主要是ALDH1和CD44/CD24。
3.1 ALDH1
Ricardo等【8】研究表明,ALDH1陽(yáng)性表型并不存在于某一特定的分子亞型中,最常見(jiàn)于基底細(xì)胞樣和HER2過(guò)表達(dá)亞型中,對(duì)466例浸潤(rùn)性乳腺癌組織和8種乳腺癌細(xì)胞系的分析表明,ALDH1陽(yáng)性腫瘤組織中39.4%為基底細(xì)胞樣型,HER2過(guò)表達(dá)型也主要表達(dá)ALDH1。另有研究發(fā)現(xiàn),ALDH1在不同分子亞型的導(dǎo)管原位癌中呈差異性表達(dá),在管腔B型中表達(dá)最高,其次是HER2、基底細(xì)胞樣型,在管腔A型中最少【9】。Liu等【10】研究報(bào)道,ALDH1 A1的表達(dá)水平隨著腫瘤體積、組織學(xué)分級(jí)、淋巴結(jié)轉(zhuǎn)移率、HER2表達(dá)水平的增高和ER/PR表達(dá)水平的降低而增高,ALDH1 A1陽(yáng)性的乳腺癌患者預(yù)后相對(duì)于ALDH1A1陰性者較差。Mieog等【11】研究發(fā)現(xiàn),ALDH1的表達(dá)和預(yù)測(cè)作用具有年齡依賴性,隨著年齡的增長(zhǎng),ALDH1的表達(dá)水平降低,對(duì)于65歲以下的患者,ALDH1陽(yáng)性可作為預(yù)后差的獨(dú)立危險(xiǎn)因素。Nalwoga等【12】研究發(fā)現(xiàn),ALDH1的表達(dá)與病理分級(jí)的增加、核分裂象的增多、ER陰性、PR陰性、P53陽(yáng)性、CK5/6陽(yáng)性、EGFR陽(yáng)性及基底細(xì)胞樣亞型有密切關(guān)系。Ohi等【13】的研究也顯示,ALDH1的表達(dá)與較高的組織學(xué)分級(jí)密切相關(guān)。
3.2 CD44/CD24
目前多項(xiàng)研究表明,CD44陽(yáng)性/CD24陰性/低表達(dá)表型主要在基底細(xì)胞樣亞型中表達(dá)【8,14-15】。Ricardo等【8】的研究表明,在76.5%的基底細(xì)胞樣亞型乳腺癌組織中,CD44陽(yáng)性/CD24陰性/低表達(dá)表型的細(xì)胞比例最高,基底/肌上皮細(xì)胞系也主要表達(dá)CD44陽(yáng)性/CD24陰性/低表達(dá)。Gudadze等【14】研究也表明,在乳腺浸潤(rùn)性導(dǎo)管癌管腔A型中,CD44陽(yáng)性/CD24陰性/低表達(dá)者比例低,而在管腔B和基底細(xì)胞樣型中,其比例最高;CD44陽(yáng)性/CD24陰性/低表達(dá)比例隨著臨床分期的增高而顯著增加,而且CD44陽(yáng)性/CD24陰性/低表達(dá)者遠(yuǎn)處淋巴結(jié)轉(zhuǎn)移率升高,表明該表型在腫瘤進(jìn)展和擴(kuò)散中發(fā)揮重要作用。DeBeca等【15】研究發(fā)現(xiàn),CD44陽(yáng)性/CD24陰性/低表達(dá)的表達(dá)與乳腺癌組織學(xué)類型具有相關(guān)性,CD44陽(yáng)性/CD24陰性/低表達(dá)表型在髓樣癌、乳頭狀癌和小管癌中高表達(dá)(分別占80%、100%和100%),而在浸潤(rùn)性導(dǎo)管癌中低表達(dá)(僅占45.3%),僅髓樣癌和化生性乳腺癌可同時(shí)表達(dá)ALDH1和CD44陽(yáng)性/CD24陰性/低表達(dá)(分別占36.4%和28.6%)。
此外,有研究發(fā)現(xiàn),CXCR4和ABCG2在管腔A、管腔B、HER2過(guò)表達(dá)和基底細(xì)胞樣亞型乳腺癌組織中表達(dá)量依次遞增,在HER2過(guò)表達(dá)和基底細(xì)胞樣型中表達(dá)最高【16】。FOXC2是人類叉頭(forkhead)家族的轉(zhuǎn)錄因子,在具有上皮間質(zhì)轉(zhuǎn)化(EMT)和CSC特性的密封蛋白低表達(dá)亞型乳腺癌中富含F(xiàn)OXC2誘導(dǎo)基因的表達(dá)印跡,可作為基于阻斷EMT來(lái)治療密封蛋白低表達(dá)亞型乳腺癌的靶點(diǎn)【17】。
綜上所述,基底細(xì)胞樣亞型乳腺癌中含有不同表型的BCSC比例最高,因此認(rèn)為三陰性乳腺癌(TNBC)的惡性生物學(xué)行為與此密切相關(guān)。研究可靠的特異性的干細(xì)胞標(biāo)志物對(duì)于鑒別不同表型的乳腺癌干細(xì)胞群,開(kāi)展靶向治療具有關(guān)鍵作用。
4 BCSC的表型與預(yù)后
早期乳腺癌患者大約有30%復(fù)發(fā)或遠(yuǎn)處轉(zhuǎn)移。ALDH1陽(yáng)性腫瘤與高復(fù)發(fā)、轉(zhuǎn)移率顯著相關(guān),復(fù)發(fā)后ALDH1陽(yáng)性腫瘤細(xì)胞的比例升高,而CD44陽(yáng)性/CD24陰性腫瘤細(xì)胞比例未變化。盡管CD44陽(yáng)性/CD24陰性/低表達(dá)細(xì)胞比例與轉(zhuǎn)移率沒(méi)有明顯關(guān)系,但其高比例是復(fù)發(fā)、轉(zhuǎn)移的危險(xiǎn)因素。因此有研究認(rèn)為,ALDH1陽(yáng)性/CD44陽(yáng)性/CD24陰性/低表達(dá)的BCSC在腫瘤轉(zhuǎn)移中發(fā)揮重要作用,但相對(duì)于CD44陽(yáng)性/CD24陰性/低表達(dá)表型,ALDH1陽(yáng)性細(xì)胞比例可更好地預(yù)測(cè)乳腺癌轉(zhuǎn)移【18】。多項(xiàng)研究已證實(shí),ALDH1是預(yù)測(cè)原位乳腺癌臨床預(yù)后差的有力指標(biāo)【13,19】。有研究發(fā)現(xiàn),在伴有1~3級(jí)腋窩淋巴結(jié)轉(zhuǎn)移的乳腺癌腋窩淋巴結(jié)中ALDH1陽(yáng)性者其無(wú)病生存率較低,預(yù)后差【19】。Ohi等【13】對(duì)106例TNBC患者免疫組化分析顯示,腫瘤細(xì)胞內(nèi)ALDH1表達(dá)者的無(wú)病生存率下降,是TNBC的獨(dú)立預(yù)后指標(biāo)。
有研究表明,TNBC具有較高的侵襲、轉(zhuǎn)移和致瘤能力,該腫瘤組織和細(xì)胞系中CD44陽(yáng)性/CD24陰性/低表達(dá)表達(dá)水平遠(yuǎn)遠(yuǎn)高于其他亞型乳腺癌,因此認(rèn)為CD44陽(yáng)性/CD24陰性/低表達(dá)表型在該乳腺癌高復(fù)發(fā)及遠(yuǎn)處轉(zhuǎn)移中可能發(fā)揮重要作用,可以將其作為治療的靶點(diǎn)【20】。有研究顯示,在TNBC細(xì)胞系MDA-MB-231中,具有較高自我更新和克隆形成能力的細(xì)胞均表現(xiàn)為CD133陽(yáng)性,而且CD133可促進(jìn)血管化擬態(tài)的形成,可能在TNBC的復(fù)發(fā)和進(jìn)展中起重要作用【21】。
5 BCSC與放療抵抗
Phillips等【22】將乳腺癌細(xì)胞懸浮培養(yǎng)制備乳腺球和貼壁細(xì)胞,兩種培養(yǎng)來(lái)源的細(xì)胞單次2Gy照射后,發(fā)現(xiàn)乳腺球來(lái)源的細(xì)胞存活分?jǐn)?shù)高于貼壁細(xì)胞;分割照射后非黏附性CD44陽(yáng)性/CD24陰性/低表達(dá)細(xì)胞比例明顯增加;檢測(cè)放射敏感相關(guān)分子活性氧類(ROS)、H2AX磷酸化水平后發(fā)現(xiàn),乳腺球來(lái)源的細(xì)胞中這兩種物質(zhì)均低于貼壁細(xì)胞。以上結(jié)果均提示乳腺球來(lái)源的BCSC具有更強(qiáng)的抗輻射能力。
6 BCSC的調(diào)控機(jī)制
目前認(rèn)為,在BCSC的調(diào)控中涉及Notch、Wnt/β-聯(lián)蛋白和刺猬(Hedgehog)3個(gè)主要的信號(hào)通路。這些信號(hào)通路的活化異常導(dǎo)致BCSC的產(chǎn)生。
有研究發(fā)現(xiàn),Notch活性高的乳腺癌細(xì)胞其微球體形成及BCSC標(biāo)志物的表達(dá)量增加,在基底細(xì)胞樣和管腔型乳腺癌細(xì)胞系中,Notch陽(yáng)性的細(xì)胞表達(dá)更多的Notch4受體,并具有更高的致瘤能力【23】。Wnt/β-聯(lián)蛋白信號(hào)通路異?;罨罂纱龠M(jìn)BCSC的自我更新,BCSC中Wnt及下游分子β-聯(lián)蛋白的表達(dá)水平要高于非BCSC,增加干細(xì)胞的治療抵抗性;使用該通路的阻滯劑CWP232228后,BCSC生長(zhǎng)受抑制程度要高于非BCSC【24】。有研究發(fā)現(xiàn),在乳腺癌細(xì)胞系MCF-7的BCSC亞群中,鹽霉素通過(guò)明顯下調(diào)刺猬通路中關(guān)鍵因子Smo和Gli1的表達(dá)水平,抑制BCSC的自我更新并誘導(dǎo)其凋亡【25-26】。
最新研究表明,PTEN/PI3K-AKT/mTORC、IL-6/JAK1/STAT3/NF-κB、VEGF/VEGFR2/STAT3、αvβ3/KRAS/RalB/NF-KB和BMP/TGF-β等信號(hào)通路在BCSC的調(diào)控中發(fā)揮著不可取代的作用,各通路之間相互作用活化后共同促進(jìn)BCSC自我更新、乳腺微球體的形成及EMT,從而促進(jìn)乳腺癌的發(fā)生、發(fā)展、侵襲和轉(zhuǎn)移【26-30】。使用各信號(hào)通路的抑制劑使BCSC的分化及增殖均受抑制,致使BCSC比例大大減少。目前關(guān)于這些信號(hào)通路的阻滯劑正在進(jìn)一步的研究中。
7 展望
BCSC的發(fā)現(xiàn)和深入研究為研究乳腺癌的發(fā)病機(jī)制、診治方法提供了新的視角,進(jìn)一步深入了解乳腺癌干細(xì)胞的生物學(xué)特性,從分子水平上明確其調(diào)控機(jī)制,尋找更具特異性的表面標(biāo)志物,建立以乳腺癌干細(xì)胞為靶點(diǎn)的治療體系,將開(kāi)啟乳腺癌靶向治療的新篇章。
參考文獻(xiàn)
Gonzalez-angulo A M, Morales-vasquez F, Hortobagyi G N. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1-22.
Al-hajj M, Wicha M S, Benito-hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-3988.
Cheung A M, Wan T S, Leung J C, et al. Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 2007;21(7):1423-1430.
Nakahata K, Uehara S, Nishikawa S, et al. Aldehyde dehydrogenase 1 (ALDH1) is a potential marker for cancer stem cells in embryonal rhabdomyosarcoma. PLoS One. 2015;10(4):e0125454.
Ginestier C, Hur M H, Charafe-jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555-567.
Wu S, Xue W, Huang X, et al. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol. 2015;36(4):2421-2426.
Marcato P, Dean C A, Pan D, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29(1):32-45.
Ricardo S, Vieira A F, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011;64(11):937-946.
Tsukabe M, Shimazu K, Morimoto K, et al. Clinicopathological analysis of breast ductal carcinoma in situ with ALDH1-positive cancer stem cells. Oncology. 2013;85(4):248-56.
Liu Y, Lv D L, Duan J J, et al. ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: a systematic review and meta-analysis. BMC Cancer. 2014;14:444.
Mieog J S, De Kruijf E M, Bastiaannet E, et al. Age determines the prognostic role of the cancer stem cell marker aldehyde dehydrogenase-1 in breast cancer. BMC Cancer. 2012;12:42.
Nalwoga H, Arnes J B, Wabinga H, et al. Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br J Cancer. 2010;102(2):369-375.
Ohi Y, Umekita Y, Yoshioka T, et al. Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple negative breast cancer. Histopathology. 2011;59(4):776-780.
Gudadze M, Kankava Q, Mariamidze A, et al. Features of CD44+/CD24-low phenotypic cell distribution in relation to predictive markers and molecular subtypes of invasive ductal carcinoma of the breast. Georgian Med News. 2014;(228):81-87.
De Beca F F, Caetano P, Gerhard R, et al. Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol. 2013;66(3):187-191.
許立國(guó), 李惠翔. 乳腺癌組織中ALDH1、CXCR4及ABCG2與其分子亞型的關(guān)系. 腫瘤基礎(chǔ)與臨床. 2013;26(5):387-388.
Hollier B G, Tinnirello A A, Werden S J, et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res. 2013;73(6):1981-1992.
Zhong Y, Shen S, Zhou Y, et al. ALDH1 is a better clinical indicator for relapse of invasive ductal breast cancer than the CD44+/CD24-phenotype. Med Oncol. 2014;31(3):864.
Nogami T, Shien T, Tanaka T, et al. Expression of ALDH1 in axillary lymph node metastases is a prognostic factor of poor clinical outcome in breast cancer patients with 1-3 lymph node metastases. Breast Cancer. 2014;21(1):58-65.
Ma F, Li H, Wang H, et al. Enriched CD44(+)/CD24 (-) population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 2014;353(2):153-159.
Liu T J, Sun B C, Zhao X L, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544-553.
Phillips T M, Mcbride W H, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777-1785.
D'angelo R C, Ouzounova M, Davis A, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 2015;14(3):779-787.
Jang G B, Hong I S, Kim R J, et al. Wnt/beta-catenin small molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 2015;75(8):1691-702.
Lu Y, Ma W, Mao J, et al. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling. Chem Biol Interact. 2015;228:100-107.
Zhou J, Wulfkuhle J, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158-16163.
Kim S Y, Kang J W, Song X, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25(4):961-969.
Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2014;34(24):3107-3119.
Seguin L, Kato S, Franovic A, et al. An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol. 2014;16(5):457-468.
Buijs J T, Van Der Horst G, Van Den Hoogen C, et al. The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene. 2012;31(17):2164-2174.
原文參見(jiàn):中國(guó)癌癥雜志. 2016;26(8):699-703.
聯(lián)系客服