中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
222頁,40種題型,74道題,“圓錐曲線”即“解析幾何”,絆“它”

222頁,40種題型,74道題,“圓錐曲線”即“解析幾何”,絆“它”

直線與圓的位置關(guān)系有三種情況:相交、相切和相離. 已知直線與圓的位置關(guān)系時,常用幾何法將位置關(guān)系轉(zhuǎn)化為圓心到直線的距離d與半徑r的大小關(guān)系,以此來確定參數(shù)的值或取值范圍.

本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題.

解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系的非常緊密,因此,準(zhǔn)確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.

本小題主要考查考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合能力和邏輯思維能力,考查同學(xué)們分析問題和解決問題的能力,有一定的區(qū)分度.

該題考查的是有關(guān)橢圓的離心率的問題,在求解的過程中,一定要注意離心率的公式,再者就是要學(xué)會從題的條件中判斷與之相關(guān)的量,結(jié)合橢圓中的關(guān)系求得結(jié)果.

本題考查直線與橢圓、橢圓的幾何性質(zhì),涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力.

橢圓定義的應(yīng)用主要有兩個方面:一是判斷平面內(nèi)動點與兩定點的軌跡是否為橢圓,二是利用定義求焦點三角形的周長、面積、橢圓的弦長及最值和離心率問題等;“焦點三角形”是橢圓問題中的??贾R點,在解決這類問題時經(jīng)常會用到正弦定理,余弦定理以及橢圓的定義.

本題考查橢圓及其性質(zhì)、直線與橢圓,涉及特殊與一般思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.

本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).

本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).

雙曲線知識一般作為客觀題出現(xiàn),主要考查雙曲線的幾何性質(zhì),屬于基礎(chǔ)題.注意雙曲線的焦距是2c而不是c,這一點易出錯.

本題易錯在忽視圓錐曲線方程和兩點間的距離公式的聯(lián)系導(dǎo)致求解不暢.

本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習(xí),才能在解決此類問題時事半功倍,信手拈來.

本題考查以雙曲線為載體的三角形面積的求法,滲透了直觀想象、邏輯推理和數(shù)學(xué)運算素養(yǎng).采取公式法,利用數(shù)形結(jié)合、轉(zhuǎn)化與化歸和方程思想解題.

忽視圓錐曲線方程和兩點間的距離公式的聯(lián)系導(dǎo)致求解不暢,采取列方程組的方式解出三角形的高,便可求三角形面積.

1、雙曲線的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、點到直線的距離公式.利用雙曲線的二級結(jié)論效果更佳。

本題考查雙曲線的離心率,漸近線和點到直線距離公式,也運用幾何法.

本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題。

該題考查的是有關(guān)線段長度的問題,在解題的過程中,需要先確定哪兩個點之間的距離,再分析點是怎么來的,從而得到是直線的交點,這樣需要先求直線的方程,利用雙曲線的方程,可以確定其漸近線方程,利用直角三角形的條件得到直線的斜率,結(jié)合過右焦點的條件,利用點斜式方程寫出直線的方程,之后聯(lián)立求得對應(yīng)點的坐標(biāo),之后應(yīng)用兩點間距離公式求得結(jié)果.

本題考查平面向量結(jié)合雙曲線的漸進線和離心率,滲透了邏輯推理、直觀想象和數(shù)學(xué)運算素養(yǎng).采取幾何法,利用數(shù)形結(jié)合思想解題.

雙曲線的標(biāo)準(zhǔn)方程;向量數(shù)量積坐標(biāo)表示;一元二次不等式解法.

本題主要考查拋物線與橢圓的幾何性質(zhì),滲透邏輯推理、運算能力素養(yǎng).

1、直線與拋物線;2、拋物線的幾何性質(zhì);3、反比例函數(shù).

拋物線的定義是解決拋物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到焦點的距離、拋物線上的點到準(zhǔn)線的距離)進行等量轉(zhuǎn)化.如果問題中涉及拋物線的焦點和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線定義就能解決問題.因此,涉及拋物線的焦半徑、焦點弦問題,可以優(yōu)先考慮利用拋物線的定義轉(zhuǎn)化為點到準(zhǔn)線的距離,這樣就可以使問題簡單化.

本題主要考查拋物線的性質(zhì)及運算,注意解析幾何問題中最容易出現(xiàn)運算錯誤,所以解題時一定要注意運算的準(zhǔn)確性與技巧性,基礎(chǔ)題失分過多是相當(dāng)一部分學(xué)生數(shù)學(xué)考不好的主要原因.

本小題主要考查直線與拋物線的位置關(guān)系,考查兩點間距離公式等基礎(chǔ)知識,考查同學(xué)們分析問題與解決問題的能力.

該題考查的是有關(guān)直線與拋物線相交求有關(guān)交點坐標(biāo)所滿足的條件的問題,在求解的過程中,首先需要根據(jù)題意確定直線的方程,之后需要聯(lián)立方程組,消元化簡求解,從而確定出坐標(biāo)之后借助于拋物線的方程求得焦點,最后一步應(yīng)用向量坐標(biāo)公式求得向量的坐標(biāo),之后應(yīng)用向量數(shù)量積坐標(biāo)公式求得結(jié)果,也可以不求點M、N的坐標(biāo),應(yīng)用韋達定理得到結(jié)果.

對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉(zhuǎn)化到準(zhǔn)線上,另外,直線與拋物線聯(lián)立,求判別式,利用根與系數(shù)的關(guān)系是通法,需要重點掌握.考查最值問題時要能想到用函數(shù)方法和基本不等式進行解決.

該題考查的是有關(guān)直線與橢圓的問題,涉及到的知識點有直線方程的兩點式、直線與橢圓相交的綜合問題、關(guān)于角的大小用斜率來衡量,在解題的過程中,第一問求直線方程的時候,需要注意方法比較簡單,需要注意的就是應(yīng)該是兩個,關(guān)于第二問,在做題的時候需要先將特殊情況說明,一般情況下,涉及到直線與曲線相交都需要聯(lián)立方程組,之后韋達定理寫出兩根和與兩根積,借助于斜率的關(guān)系來得到角是相等的結(jié)論.

本題主要考查求橢圓的離心率,以及橢圓中存在定點滿足題中條件的問題,熟記橢圓的簡單性質(zhì)即可求解,考查計算能力,屬于中檔試題.

定點、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的. 定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結(jié)果,因此求解時應(yīng)設(shè)參數(shù),運用推理,到最后必定參數(shù)統(tǒng)消,定點、定值顯現(xiàn).

橢圓的對稱性是橢圓的一個重要性質(zhì),判斷點是否在橢圓上,可以通過這一方法進行判斷;證明直線過定點的關(guān)鍵是設(shè)出直線方程,通過一定關(guān)系轉(zhuǎn)化,找出兩個參數(shù)之間的關(guān)系式,從而可以判斷過定點情況.另外,在設(shè)直線方程之前,若題設(shè)中未告知,則一定要討論直線斜率不存在和存在兩種情況,其通法是聯(lián)立方程,求判別式,利用根與系數(shù)的關(guān)系,再根據(jù)題設(shè)關(guān)系進行化簡.

本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.

由直線(系)和圓錐曲線(系)的位置關(guān)系,求直線或圓錐曲線中某個參數(shù)(系數(shù))的范圍問題,常把所求參數(shù)作為函數(shù)值,另一個元作為自變量求解.

確定圓的方程方法:

(1)直接法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進而寫出方程.

(2)待定系數(shù)法:

①若已知條件與圓心和半徑有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程依據(jù)已知條件列出方程組,從而求出;

②若已知條件沒有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D、E、F的方程組,進而求出D、E、F的值.

本題考查拋物線的幾何性質(zhì)、直線與拋物線的綜合應(yīng)用問題,涉及到平面向量、弦長公式的應(yīng)用.關(guān)鍵是能夠通過直線與拋物線方程的聯(lián)立,通過韋達定理構(gòu)造等量關(guān)系.

該題考查的是有關(guān)直線與拋物線的問題,涉及到的知識點有直線方程的兩點式、直線與拋物線相交的綜合問題、關(guān)于角的大小用斜率來衡量,在解題的過程中,第一問求直線方程的時候,需要注意方法比較簡單,需要注意的就是應(yīng)該是兩個,關(guān)于第二問,涉及到直線與曲線相交都需要聯(lián)立方程組,之后韋達定理寫出兩根和與兩根積,借助于斜率的關(guān)系來得到角是相等的結(jié)論.

本題考查直線斜率的計算,同時也考查了切線方程以及兩直線垂直關(guān)系的轉(zhuǎn)化,對于兩直線垂直,一般轉(zhuǎn)化為斜率之積為-1(兩直線斜率都存在時)或兩向量數(shù)量積為零來處理,考查運算求解能力,屬于中等題.

此題第一問是圓錐曲線中的定點問題和第二問是求面積類型,屬于常規(guī)題型,按部就班的求解就可以.思路較為清晰,但計算量不小.

此題第一問是圓錐曲線中的定點問題和第二問是求面積類型,屬于常規(guī)題型,按部就班的求解就可以.思路較為清晰,但計算量不?。?/p>

高考解析幾何解答題大多考查直線與圓錐曲線的位置關(guān)系,直線與圓錐曲線的位置關(guān)系是一個很寬泛的考試內(nèi)容,主要由求值、求方程、求定值、求最值、求參數(shù)取值范圍等幾部分組成;解析幾何中的證明問題通常有以下幾類:證明點共線或直線過定點;證明垂直;證明定值問題.其中考查較多的圓錐曲線是橢圓與拋物線,解決這類問題要重視方程思想、函數(shù)思想及化歸思想的應(yīng)用.

本題考查圓的方程的求解問題、圓錐曲線中的定點定值類問題.解決本定點定值問題的關(guān)鍵是能夠根據(jù)圓的性質(zhì)得到動點所滿足的軌跡方程,進而根據(jù)拋物線的定義得到定值,進而驗證定值符合所有情況,使得問題得解.

高考解析幾何解答題大多考查直線與圓錐曲線的位置關(guān)系,直線與圓錐曲線的位置關(guān)系是一個很寬泛的考試內(nèi)容,主要由求值、求方程、求定值、求最值、求參數(shù)取值范圍等幾部分組成.其中考查較多的圓錐曲線是橢圓與拋物線,解決這類問題要重視方程思想、函數(shù)思想及化歸思想的應(yīng)用.

本題考查了求橢圓的標(biāo)準(zhǔn)方程,以及利用直線與橢圓的位置關(guān)系,判斷三角形形狀以及三角形面積最大值問題,考查了數(shù)學(xué)運算能力,考查了利用導(dǎo)數(shù)求函數(shù)最大值問題.

本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
圓錐曲線之斜率問題大總結(jié)
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服