平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)k=1時,直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線上的一個動點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.
考點(diǎn)分析:
二次函數(shù)綜合題.
題干分析:
方法一:
(1)當(dāng)k=1時,聯(lián)立拋物線與直線的解析式,解方程求得點(diǎn)A、B的坐標(biāo);
(2)如答圖2,作輔助線,求出△ABP面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出最大值及點(diǎn)P的坐標(biāo);
(3)“存在唯一一點(diǎn)Q,使得∠OQC=90°”的含義是,以O(shè)C為直徑的圓與直線AB相切于點(diǎn)Q,由圓周角定理可知,此時∠OQC=90°且點(diǎn)Q為唯一.以此為基礎(chǔ),構(gòu)造相似三角形,利用比例式列出方程,求得k的值.需要另外注意一點(diǎn)是考慮直線AB是否與拋物線交于C點(diǎn),此時亦存在唯一一點(diǎn)Q,使得∠OQC=90°.
方法二:
(1)聯(lián)立直線與拋物線方程求出點(diǎn)A,B坐標(biāo).
(2)利用面積公式求出P點(diǎn)坐標(biāo).
(3)列出定點(diǎn)O坐標(biāo),用參數(shù)表示C,Q點(diǎn)坐標(biāo),利用黃金法則二求出k的值.
聯(lián)系客服