摘要
腸道菌群對機體代謝起重要的調(diào)控作用,減重手術作為目前治療肥胖及其合并癥最有效的方法能夠顯著改變腸道菌群。術后腸道菌群的變化具有時空特異性,術后不同時間點上和不同腸段中的菌群組成與結構不盡相同。減重術后腸道菌群改變的原因可能在于手術引起的胃腸道解剖及相應生理功能的變化。通過移植術后菌群發(fā)現(xiàn)腸道菌群參與減重手術改善代謝,其中的機制可能和菌群-宿主相互作用的眾多分子途徑有關。同時,術后腸道菌群的變化還與減重手術患者的預后相關。此外,減重術后所引起的菌群變化不僅與改善肥胖和代謝有關,還可能存在潛在危害,其中減重手術后的營養(yǎng)吸收不良與腸道菌群的改變密切相關。因此,闡明減重術后腸道菌群的變化特征及相關機制有助于深入理解菌群在減重手術中的作用和影響,本文為此作一綜述。
肥胖人群的比例在世界范圍內(nèi)不斷上升。據(jù)統(tǒng)計,2015年已有6.037億成年人肥胖[1]。肥胖與眾多的慢性疾病有關,包括心血管疾病、糖尿病,慢性腎臟疾病和腫瘤等[2-3]。生活方式干預、藥物治療和減重手術是改善病態(tài)肥胖的3種主要方法[4]。目前,以胃旁路手術(Roux-Y gastric bypass,RYGB)和袖狀胃切除術(sleeve gastrectomy,SG)為代表的減重手術是治療肥胖最有效的方法,手術不僅能夠顯著降低體質(zhì)量,還可有效緩解肥胖合并癥如2型糖尿病和非酒精性脂肪性肝病等代謝性疾病[5]。然而,手術改善代謝的機制至今仍未完全明確[6]。
在人體腸道中,大約有3萬億個細菌,這些細菌與機體代謝密切相關[7]。作為一類消化道手術,減重手術可顯著改變腸道菌群的組成和結構,但減重手術后腸道菌群的具體變化以及術后菌群的作用仍需深入研究。本文通過綜述RYGB和SG術后腸道菌群的時空變化特征及其與手術效果之間的關系,進一步闡明腸道菌群在減重手術改善代謝中的作用。
人類的腸道中共有50多個菌門,其中厚壁菌門、擬桿菌門、放線菌門、梭菌門、變形菌門、疣菌門和藍藻門是7個主要的細菌門類。其中,擬桿菌門和厚壁菌門占總數(shù)的90%以上[8]。在腸道菌群的變化中,存在短期和長期的變化[9]。由于減重術后患者的飲食調(diào)整、用藥變更及腸內(nèi)環(huán)境變化等因素,使得術后不同時間點上的腸道菌群變化也不盡相同。
對于RYGB,文獻報道早在術后1周,患者的腸道菌群即發(fā)生改變,雙歧桿菌科豐度降低,鏈球菌科和腸桿菌科豐度增加[10]。術后3個月則發(fā)現(xiàn),擬桿菌屬的普氏菌組和大腸桿菌豐度增加,而乳酸菌屬和雙歧桿菌屬水平下降[11]。也有研究發(fā)現(xiàn),RYGB術后3個月韋榮球菌屬和嗜黏蛋白-艾克曼菌屬增多,并持續(xù)至術后6個月,兩者可能是RYGB術后的特征性菌屬[12]。長期隨訪則發(fā)現(xiàn),在術后10~12年,患者腸道菌群中有更高豐度的變形菌門、疣微菌科屬和鏈球菌科,而類桿菌豐度則相對下降,表明腸道菌群在RYGB術后發(fā)生持久改變[13]。而且研究表明,RYGB相對于SG能夠帶來更明顯的腸道菌群改變,但SG術后也同樣能引起腸道菌群的變化[14]。
早在術后1周,SG患者的腸道菌群即發(fā)生變化,如雙歧桿菌科豐度降低[10]。在SG術后3個月,則有艾克曼菌屬和布勞菌豐度升高,其中后者被認為可能是SG的特征性菌屬[12]。在SG術后6個月,還有其他微生物的豐度增加,如理研菌科、克里斯滕森菌科和梭狀芽孢桿等[15]。而SG術后遠期腸道菌群是否有持久變化,目前還缺乏研究。總之,腸道菌群在減重術后不同時間點上的變化不盡相同。表1歸納了近幾年減重手術后腸道菌群變化的相關研究[10-13,15-19]。
由于腸道各部位激素水平和解剖的差異,不同腸段中菌群的組成和功能不盡相同。如空腸主要支持革蘭陽性需氧菌和兼性厭氧菌的生長,包括乳酸菌、腸球菌和鏈球菌。而從末端回腸到結腸,主要以厭氧菌和革蘭陰性菌為主[20]。不同部位的菌群對機體的代謝有著不同的作用,例如空腸的腸道菌群與脂質(zhì)的消化吸收有關[21];而結腸中,腸道菌群產(chǎn)生的短鏈脂肪酸與結腸的腸道屏障和炎性改變有關[22]。由于臨床上菌群采樣的限制,缺乏除糞便之外其他部位菌群的研究,故減重術后不同腸段中菌群變化的結果主要來自動物實驗,且集中于RYGB模型。研究發(fā)現(xiàn),大鼠RYGB術后回腸微生物群落豐富度升高,腸桿菌目與疣微菌目豐度增加、動物乳桿菌與羅伊乳桿菌豐度降低,而盲腸和結腸中的菌群變化則較回腸更顯著,其中雙歧桿菌、鏈球菌、梭桿菌、細絨毛菌和腸球菌等菌屬的豐度均呈上升趨勢,提示手術可能對大腸菌群的影響更強[23-25]。這也表明術后腸道菌群的變化可能具有空間特異性。
雖然已有大量研究報道了減重術后腸道菌群的變化,但術后菌群改變的原因和機制還未明確。飲食作為目前已知影響腸道菌群最重要的因素,很可能在導致減重術后患者菌群的變化中起重要作用[26]。術后患者的飲食習慣、食物偏好、進食頻率和速度以及用餐節(jié)律等任一方面的細微改變,都有可能引起腸道菌群的顯著變化[27]。然而,在減重手術的肥胖動物模型中,即使在術前、術后都進食高脂飲食且手術組和假手術組同籠飼養(yǎng),手術組動物也有顯著的菌群變化,表明手術本身可以改變菌群[28]。其中的原因,可能與術后胃腸道解剖變化及隨之改變的消化道生理功能有關。菌群生長于宿主腸道,受到腸內(nèi)環(huán)境的影響,而減重手術則可能通過改變腸內(nèi)環(huán)境影響菌群,如術后胃酸分泌減少、胃排空加快、胃腸激素分泌增加、膽汁酸腸肝循環(huán)變化以及局部免疫炎癥改善等都可能通過改變腸道菌群的營養(yǎng)、代謝及生存環(huán)境來對菌群造成選擇性壓力,繼而改變菌群的組成和功能。目前,在此方面有關膽汁酸的研究較多。膽汁酸由于其自身的抗菌活性被發(fā)現(xiàn)可調(diào)控腸道菌群。直接予外源性膽汁酸干預或抑制內(nèi)源性膽汁酸合成都會改變腸道菌群的組成,提示膽汁酸可能介導手術改變腸道菌群[29-30]。同時,減重手術可引起餐后腸道胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)分泌增加,近期有研究發(fā)現(xiàn)GLP-1也可能參與手術改變腸道菌群[31]。直接給予小鼠GLP-1受體激動劑,可顯著改變腸道菌群的整體結構和組成豐度,提示GLP-1可能是術后菌群變化的機制之一[32]。與GLP-1類似,在減重手術后,餐后血液循環(huán)中YY肽水平升高,且其在一定程度上也能夠影響腸道菌群的組成[33]。除腸道局部之外,減重手術還可改善全身其他組織和器官的炎癥和生理功能[34-35]。而這些腸外組織和器官的功能變化是否會影響腸道菌群還有待進一步研究??傊?,減重手術后腸道菌群的改變受眾多因素影響,究竟何種因素起決定性作用尚無定論。
近期的基礎研究顯示,腸道菌群或可參與手術改善代謝。借助無菌動物模型,Liou等[36]率先證實了RYGB術后的腸道菌群可促進體質(zhì)量和體脂下降。Tremaroli等[19]則進一步發(fā)現(xiàn),RYGB患者術后遠期的腸道菌群也可促進改善體脂;而將糖尿病大鼠RYGB術后的盲腸內(nèi)容物移植入無菌小鼠,可使餐后葡萄糖峰值降低,表明RYGB術后的腸道菌群還能促進血糖改善。同樣,在SG動物模型中,圍手術期使用抗生素可明顯削弱手術減重和調(diào)節(jié)血糖的效果[37]。而將術后盲腸富集菌群移植入抗生素處理后的糖尿病大鼠中還可顯著改善葡萄糖耐量,表明腸道菌群在SG改善肥胖和調(diào)節(jié)血糖中也發(fā)揮了一定的作用[38]。近期有關腸道菌群參與手術改善代謝的論證研究[19,24,36,39-40],見表2。
如上述,腸道菌群在減重手術改善代謝中起重要作用,其中的機制可能和參與菌群—宿主互作的眾多分子途徑有關。例如,腸道菌群的主要代謝產(chǎn)物——短鏈脂肪酸被發(fā)現(xiàn)可能參與其中。由菌群酵解膳食纖維所產(chǎn)生的短鏈脂肪酸能夠影響腸道局部及其他代謝相關組織和器官的免疫、神經(jīng)和內(nèi)分泌等功能,與肥胖等代謝紊亂密切相關[41-42]。近期研究發(fā)現(xiàn),RYGB術后循環(huán)短鏈脂肪酸濃度和組成都發(fā)生顯著變化,并與術后的代謝改善顯著相關,提示短鏈脂肪酸或是菌群介導手術改善肥胖的機制之一[43]。與此同時,腸道菌群的另一類代謝產(chǎn)物——支鏈氨基酸,也被發(fā)現(xiàn)與肥胖和胰島素抵抗強相關,而通過藥物促進支鏈氨基酸降解則可改善代謝紊亂。研究顯示,減重術后循環(huán)支鏈氨基酸水平顯著降低,提示手術可能通過改變菌群減少相關支鏈氨基酸產(chǎn)生影響代謝[44]。然而,最近的文獻則發(fā)現(xiàn),增加支鏈氨基酸攝入或抑制其降解并不影響SG改善代謝的效果,表明支鏈氨基酸并非手術改善代謝所必需[45]。此外,腸道菌群的內(nèi)毒素等可引起體內(nèi)代謝組織和器官的低等級炎癥反應,造成胰島素抵抗等紊亂,減重手術后其水平顯著降低,各相關代謝組織和器官的炎性狀態(tài)好轉(zhuǎn),胰島素抵抗改善,表明術后菌群內(nèi)毒素減少可能參與手術改善代謝[46]。近期的研究還重點關注了術后菌群與膽汁酸的相互調(diào)控介導手術改善代謝的作用。膽汁酸可影響腸道菌群的組成和結構,而腸道菌群亦可通過膽汁酸的次級代謝影響其腸肝循環(huán)[20]。既往文獻已證實膽汁酸的兩類受體——法尼酯衍生物X受體(farnesoid X receptor, FXR)和G蛋白偶聯(lián)受體TGR5都是減重手術的必要作用靶點[47-48]。而最新的研究則進一步發(fā)現(xiàn),術后的腸道菌群可通過特定膽汁酸合成作用于腸道和肝臟的膽汁酸受體,繼而調(diào)控宿主的糖脂代謝,介導手術改善肥胖[40]。
減重術后體質(zhì)量反彈或手術效果欠佳是大部分患者的擔憂。導致體質(zhì)量反彈的因素有很多,包括手術相關因素、行為因素(如不遵守飲食和體育活動建議)和生物因素(如腸道激素)[49]?;谀c道菌群在手術改善肥胖中的重要作用,術后的菌群變化或與臨床減重預后有關。在一項RYGB術后5年的隨訪研究中,未復胖患者相較于復胖患者有更高豐度的嗜黏蛋白-艾克曼菌屬,深入分析患者術后的核心微生物分類,發(fā)現(xiàn)減重效果較好者的腸道菌群多樣性更好,其體內(nèi)有10個屬來自厚壁菌門,5個屬來自變形菌門,1個屬來自擬桿菌門;相反,效果不理想者體內(nèi)僅有變形菌門4個屬和厚壁菌門1個屬,而在體質(zhì)量反彈者體內(nèi)僅有擬桿菌門的1個屬[50]。SG術后也有類似的發(fā)現(xiàn),在多余體質(zhì)量下降(excess weight loss,EWL)≥50%的患者體內(nèi)有更豐富的厚壁菌門,而在EWL<50%的患者體內(nèi)則有更多的擬桿菌門[51]。此外,有研究還發(fā)現(xiàn),術后腸道菌群變化與糖尿病預后有關,在RYGB術后1年,糖尿病緩解的患者相對于未緩解患者存在5個菌屬的豐度差異[52]。另一項研究顯示,RYGB和SG術后1年糖尿病緩解的人群體內(nèi)腸道羅斯拜瑞氏菌豐度增加,而未緩解人群則在術前有更高豐度的脫硫弧菌屬,表明減重手術的預后不僅與術后的菌群特征有關,可能還與術前菌群特征相關[14]。
減重手術在有效改善代謝的同時,會因消化道生理解剖的變化造成相關的并發(fā)癥。多項臨床試驗表明,RYGB術后患者小腸細菌過度生長(small intestinal bacterial overgrowth,SIBO)情況顯著增加[53-54];可能是由術后腸腔內(nèi)pH值升高和溶解氧增加所致,術后腸道內(nèi)環(huán)境變化使兼性需氧微生物更容易生長。研究指出,SIBO不僅與術后的惡心、嘔吐、腹脹和腹瀉等消化道癥狀密切相關,還與術后長期的營養(yǎng)元素缺乏有關,如維生素、鐵和葉酸等[55-56]。術后小腸菌群的過度生長能夠刺激炎性因子合成并引起炎性反應,從而使絨毛萎縮,營養(yǎng)素吸收受損[57]。小腸微生物數(shù)量的增加還會與宿主競爭腔內(nèi)蛋白質(zhì),繼而影響氨基酸和多肽的吸收[58]。對于減重術后出現(xiàn)的SIBO,給予抗生素和益生菌治療均有較好的療效,有研究對2例RYGB術后SIBO陽性患者予抗生素治療,結果顯示,可改善其營養(yǎng)狀況[59]。此外,另一項研究顯示,RYGB術后SIBO能使硫胺素吸收下降,給予抗生素治療可改善硫胺素吸收障礙[60]。給予益生菌治療也是有效的治療方法,在RYGB術后給予益生菌治療不僅能夠增加維生素B12的吸收,還能進一步提高減重手術療效[61];益生菌治療還能減少腹痛腹脹等腹部癥狀[62]。根據(jù)目前的文獻報道尚未發(fā)現(xiàn)SG術后SIBO情況。
減重手術作為如今改善肥胖及其合并癥最有效的方法,能顯著改變腸道菌群。深入研究術后腸道菌群變化的時空特征及其參與改善代謝的分子機制,可幫助臨床醫(yī)生和科研人員發(fā)現(xiàn)具有改善代謝潛力的微生物及相關分子產(chǎn)物,進而促進研發(fā)出新的治療手段,以非手術的方式有效改善肥胖,此外,通過明確術前術后腸道菌群的變化與手術預后及并發(fā)癥的關系,能為日后進一步提高手術療效與防治術后并發(fā)癥奠定科學基礎。
利益沖突 所有作者均聲明不存在利益沖突
滑動閱讀參考文獻
?[1] Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017,377(1):13-27. DOI: 10.1056/NEJMoa1614362.
[2] Gallagher EJ, LeRoith D. Obesity and Diabetes: The increased risk of cancer and cancer-related mortality[J]. Physiol Rev, 2015,95(3):727-748. DOI:10.1152/physrev. 00030.2014.
[3] Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies[J]. Lancet, 2011,377(9771):1085-1095. DOI:10.1016/S0140-6736(11)60105-0.
[4] Andreotti F, Crea F, Hennekens CH. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med, 2017,376(15):1490-1491. DOI:10.1056/NEJMc1701944.
[5] Puzziferri N, Roshek TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review[J]. JAMA, 2014,312(9):934-942. DOI:10.1001/jama.2014. 10706.
[6] Evers SS, Sandoval DA, Seeley RJ. The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes[J]. Annu Rev Physiol, 2017,79:313-334.DOI:10.1146/annurev-physiol-022516- 034423.
[7] Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018,361:k2179. DOI: 10.1136/bmj.k2179.
[8] B?ckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005,307(5717):1915-1920. DOI: 10.1126/science.1104816.
[9] Santacruz A, Marcos A, W?rnberg J, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents[J]. Obesity (Silver Spring), 2009,17(10):1906-1915. DOI: 10.1038/oby.2009.112.
[10] Paganelli FL, Luyer M, Hazelbag CM, et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type[J]. Sci Rep, 2019,9(1):10979. DOI: 10.1038/s41598-019- 47332-z.
[11] Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010,59(12):3049- 3057. DOI: 10.2337/db10-0253.
[12] Sánchez-Alcoholado L, Gutiérrez-Repiso C, Gómez-Pérez AM, et al. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries[J]. Surg Obes Relat Dis, 2019,15(11):1888-1895. DOI: 10.1016/j.soard.2019.08.551.
[13] Mabey JG, Chaston JM, Castro DG, et al. Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group[J]. Surg Obes Relat Dis, 2020,16(9):1304-1311. DOI:10.1016/j.soard.2020.04.006.
[14] Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission[J]. Obes Surg, 2017,27(4):917-925. DOI: 10. 1007/s11695-016-2399-2.
[15] Farin W, O?ate FP, Plassais J, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis[J]. Surg Obes Relat Dis, 2020,16(7):852-862. DOI: 10.1016/j.soard.2020.03.014.
[16] Ikeda T, Aida M, Yoshida Y, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy[J]. Br J Surg, 2020,107(12):1673-1685. DOI: 10.1002/bjs.11654.
[17] Palmisano S, Campisciano G, Silvestri M, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode[J]. J Gastrointest Surg, 2020,24(8):1736-1746. DOI: 10.1007/s11605-019-04321-x.
[18] Karami R, Kermansaravi M, Pishgahroudsari M, et al. Changes in gut microbial flora after Roux-en-Y gastric bypass and sleeve gastrectomy and their effects on post-operative weight loss[J]. Updates Surg, 2021,73(4):1493-1499. DOI: 10.1007/s13304-020-00900-9.
[19] Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation[J]. Cell Metab, 2015,22(2):228-238. DOI: 10.1016/j.cmet.2015.07.009.
[20] Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019,76(3):473-493. DOI: 10.1007/s00018-018-2943-4.
[21] Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host Microbe, 2018,23(4):458-469.e5. DOI: 10.1016/j.chom.2018.03.011.
[22] Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016,7(3):189-200. DOI: 10.1080/19490976.2015.1134082.
[23] Haange SB, Jehmlich N, Krügel U, et al. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss[J]. Microbiome, 2020,8(1):13. DOI: 10.1186/s40168-020-0788-1.
[24] Arora T, Seyfried F, Docherty NG, et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass[J]. ISME J, 2017,11(9):2035-2046. DOI: 10.1038/ismej.2017.70.
[25] Wu J, Zhang PB, Ren ZQ, et al. Changes of serum lipopolysaccharide, inflammatory factors, and cecal microbiota in obese rats with type 2 diabetes induced by Roux-en-Y gastric bypass[J]. Nutrition, 2019,67-68:110565. DOI: 10.1016/j.nut.2019.110565.
[26] De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome[J]. Gut, 2016,65(11):1812-1821. DOI: 10.1136/gutjnl-2015-309957.
[27] Al-Najim W, Docherty NG, le Roux CW. Food intake and eating behavior after bariatric surgery[J]. Physiol Rev, 2018,98(3):1113-1141. DOI:10.1152/physrev.00021. 2017.
[28] Jahansouz C, Staley C, Bernlohr DA, et al. Sleeve gastrectomy drives persistent shifts in the gut microbiome[J]. Surg Obes Relat Dis, 2017,13(6):916-924. DOI: 10.1016/j.soard.2017.01.003.
[29] Noel OF, Still CD, Argyropoulos G, et al. Bile acids, fxr, and metabolic effects of bariatric surgery[J]. J Obes, 2016,2016:4390254. DOI: 10.1155/2016/4390254.
[30] Zheng X, Huang F, Zhao A, et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice[J]. BMC Biol, 2017,15(1):120. DOI: 10.1186/s12915-017-0462-7.
[31] Cavin JB, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after roux-en-y gastric bypass vs sleeve gastrectomy[J]. Gastroenterology, 2016,150(2):454-464.e9. DOI: 10.1053/j.gastro.2015.10.009.
[32] Wang L, Li P, Tang Z, et al. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment[J]. Sci Rep, 2016,6:33251. DOI: 10.1038/srep33251.
[33] Lach G, Schellekens H, Dinan TG, et al. Anxiety, depression, and the microbiome: a role for gut peptides[J]. Neurotherapeutics, 2018,15(1):36-59. DOI: 10.1007/s13311-017-0585-0.
[34] Min T, Prior SL, Dunseath G, et al. Temporal effects of bariatric surgery on adipokines, inflammation and oxidative stress in subjects with impaired glucose homeostasis at 4 years of follow-up[J]. Obes Surg, 2020,30(5):1712-1718. DOI: 10.1007/s11695-019-04377-3.
[35] Poitou C, Perret C, Mathieu F, et al. Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: a rna-seq study[J]. PLoS One, 2015,10(5):e0125718. DOI: 10.1371/journal.pone.0125718.
[36] Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med, 2013,5(178):178ra41. DOI: 10.1126/scitranslmed.3005687.
[37] Jahansouz C, Staley C, Kizy S, et al. Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy[J]. Ann Surg, 2019,269(6):1092-1100. DOI: 10.1097/SLA.0000000000002729.
[38] Péan N, Le Lay A, Brial F, et al. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling[J]. Diabetologia, 2020,63(6):1223-1235. DOI: 10.1007/s00125-020-05122-7.
[39] Fouladi F, Brooks AE, Fodor AA, et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2019,29(4):1259- 1267. DOI: 10.1007/s11695-018-03653-y.
[40] Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery[J]. Cell Host Microbe, 2021,29(3):408-424.e7. DOI: 10.1016/j.chom.2020.12.004.
[41] Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016,165(6):1332- 1345. DOI: 10.1016/j.cell.2016.05.041.
[42] Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019,16(8):461-478. DOI: 10.1038/s41575-019-0157-3.
[43] Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity[J]. Nutrients, 2020,12(3)DOI: 10.3390/nu12030802.
[44] Hanvold SE, Vinknes KJ, Bastani NE, et al. Plasma amino acids, adiposity, and weight change after gastric bypass surgery: are amino acids associated with weight regain?[J]. Eur J Nutr, 2018,57(7):2629-2637. DOI:10.1007/s00394-017-1533-9.
[45] Bozadjieva Kramer N, Evers SS, Shin JH, et al. The Role of elevated branched-chain amino acids in the effects of vertical sleeve gastrectomy to reduce weight and improve glucose regulation[J]. Cell Rep, 2020,33(2):108239. DOI: 10.1016/j.celrep.2020.108239.
[46] Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus[J]. Surgery, 2012,151(4):587-593. DOI: 10.1016/j.surg.2011.09.038.
[47] Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy[J]. Nature,2014,509(7499):183-188. DOI:10.1038/nature13135.
[48] Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects[J]. Nat Chem Biol, 2021,17(1):20-29. DOI:10.1038/s41589-020-0604-z.
[49] Lauti M, Kularatna M, Hill AG, et al. Weight regain following sleeve gastrectomy-a systematic review[J]. Obes Surg,2016,26(6):1326-1334. DOI:10.1007/s11695- 016-2152-x.
[50] Faria SL, Santos A, Magro DO, et al. Gut microbiota modifications and weight regain in morbidly obese women after Roux-en-Y gastric bypass[J]. Obes Surg, 2020,30(12):4958-4966. DOI: 10.1007/s11695-020-04956-9.
[51] Stefura T, Zapa?a B, Stój A, et al. Does postoperative oral and intestinal microbiota correlate with the weight-loss following bariatric surgery?-a cohort study[J]. J Clin Med, 2020,9(12)DOI: 10.3390/jcm9123863.
[52] Al Assal K, Prifti E, Belda E, et al. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission[J]. Nutrients, 2020,12(2)DOI: 10.3390/nu12020278.
[53] Sabate JM, Coupaye M, Ledoux S, et al. Consequences of small intestinal bacterial overgrowth in obese patients before and after bariatric surgery[J]. Obes Surg, 2017,27(3):599-605. DOI: 10.1007/s11695-016-2343-5.
[54] Coelho LK, Carvalho NS, Navarro-Rodriguez T, et al. Lactulose breath testing can be a positive predictor before weight gain in participants with obesity submitted to Roux-en-Y gastric bypass[J]. Obes Surg, 2019,29(11):3457-3464. DOI: 10.1007/s11695-019-04006-z.
[55] Dolan RD, Baker J, Harer K, et al. Small intestinal bacterial overgrowth: clinical presentation in patients with Roux-en-Y gastric bypass[J]. Obes Surg, 2021,31(2):564-569. DOI: 10.1007/s11695-020-05032-y.
[56] Mouillot T, Rhyman N, Gauthier C, et al. Study of small intestinal bacterial overgrowth in a cohort of patients with abdominal symptoms who underwent bariatric surgery[J]. Obes Surg, 2020,30(6):2331-2337. DOI:10. 1007/s11695-020-04477-5.
[57] Ciobarc? D, C?toi AF, Cop?escu C, et al. Bariatric surgery in obesity: effects on gut microbiota and micronutrient status[J]. Nutrients, 2020,12(1).DOI:10. 3390/nu12010235.
[58] Andalib I, Shah H, Bal BS, et al. Breath hydrogen as a biomarker for glucose malabsorption after Roux-en-Y gastric bypass surgery[J]. Dis Markers, 2015,2015:102760. DOI: 10.1155/2015/102760.
[59] Machado JD, Campos CS, Lopes Dah Silva C, et al. Intestinal bacterial overgrowth after Roux-en-Y gastric bypass[J]. Obes Surg, 2008,18(1):139-143. DOI: 10.1007/s11695-007-9365-y.
[60] Lakhani SV, Shah HN, Alexander K, et al. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients[J]. Nutr Res, 2008,28(5):293-298. DOI:10.1016/j.nutres. 2008.03.002.
[61] Woodard GA, Encarnacion B, Downey JR, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial[J]. J Gastrointest Surg, 2009,13(7):1198-1204. DOI:10.1007/s11605-009- 0891-x.
[62] Wagner N, Ramos M, de Oliveira Carlos L, et al. Effects of probiotics supplementation on gastrointestinal symptoms and sibo after roux-en-y gastric bypass: a prospective, randomized, double-blind, placebo- controlled trial[J]. Obes Surg, 2021,31(1):143-150. DOI: 10.1007/s11695-020-04900-x.
聯(lián)系客服
微信登錄中...
請勿關閉此頁面