如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=m/x的圖象相交于點(diǎn)A(﹣2,1),點(diǎn)B(1,n).
(1)求此一次函數(shù)和反比例函數(shù)的解析式;
(2)請直接寫出滿足不等式kx+b﹣m/x<0的解集;
(3)在平面直角坐標(biāo)系的第二象限內(nèi)邊長為1的正方形EFDG的邊均平行于坐標(biāo)軸,若點(diǎn)E(﹣a,a),如圖,當(dāng)曲線y=m/x(x<0)與此正方形的邊有交點(diǎn)時,求a的取值范圍.
考點(diǎn)分析:
反比例函數(shù)綜合題;反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;正方形的性質(zhì).
題干分析:
(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出反比例函數(shù)系數(shù)m,從而得出反比例函數(shù)解析式;由點(diǎn)B在反比例函數(shù)圖象上,即可求出點(diǎn)B的坐標(biāo),再由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)根據(jù)兩函數(shù)圖象的上下關(guān)系結(jié)合交點(diǎn)坐標(biāo),即可得出不等式的解集;
(3)過點(diǎn)O、E作直線OE,求出直線OE的解析式,根據(jù)正方形的性質(zhì)找出點(diǎn)D的坐標(biāo),并驗(yàn)證點(diǎn)D在直線OE上,再將直線OE的解析式代入到反比例函數(shù)解析式中,求出交點(diǎn)坐標(biāo)橫坐標(biāo),結(jié)合函數(shù)圖象以及點(diǎn)D、E的坐標(biāo)即可得出關(guān)于a的一元一次不等式,解不等式即可得出結(jié)論.
聯(lián)系客服