引言
1
大型與特色鋼橋的建設(shè)成就與技術(shù)進步
2
鋼橋新型與特殊材料與構(gòu)件研究與應(yīng)用
3
高性能鋼橋面研究與應(yīng)用
4
鋼橋的安全耐久理念與方法研究
團隊成員介紹
參考文獻
[1] Crossing Continents, the Longest Mid-Span Suspension Bridge in the World, https://www.1915 canakkale. com/en-us
[2] Wikipedia: 1915 ?anakkale Bridge, https://en.wikipedia.org/wiki/1915_%C3%87anakkale_Bridge
[3] 嚴晶,文浩齊,劉博楠. 大跨度飛燕式系桿拱橋樁基礎(chǔ)施工工法研究—以合江長江公路大橋為例[J].土工基礎(chǔ), 2020,34(04):434-437+441.
[4] 劉燕舞,魏海龍,何繼弘. 長江上游鋼管混凝土拱橋主拱肋安裝工藝創(chuàng)新[J].公路,2020,65(07):190-193.
[5] 李富強,魏海龍.合江長江公路大橋邊拱外包混凝土施工技術(shù)[J].智能城市, 2020, 6(10): 169-170.DOI:10.19301/j.cnki.zncs.2020.10.091.
[6] 劉奇順,張德平. 赤壁長江公路大橋橋塔設(shè)計與分析[J].武漢理工大學學報,2021,43(11):63-68.
[7] 張德平,周健鴻,王東暉. 赤壁長江公路大橋主橋主梁設(shè)計[J].橋梁建設(shè),2019,49(04):81-85.
[8] 張德平,徐偉,黃細軍,杜萍. 赤壁長江公路大橋鋼錨梁索塔錨固結(jié)構(gòu)優(yōu)化設(shè)計[J]. 世界橋梁, 2019,47(05): 12-16.
[9] 李銘等. 莆炎高速沙溪大橋[R]. 中交公規(guī)院,北京,2020
[10] 寧伯偉. 新建安九鐵路鳊魚洲長江大橋主航道橋設(shè)計方案研究[J]. 世界橋梁,2018,46(5):86-88.
[11] 寧伯偉. 新建安九鐵路鳊魚洲長江大橋總體設(shè)計[J]. 橋梁建,2020,50(1):1-4.
[12] 曾子豪. 斜拉扣掛法吊裝大跨度鋼管拱橋過程中拱肋整體受力分析[J]. 四川建筑,2019,39(3): 168-171.
[13] 張建金等.玉磨鐵路元江雙線特大橋工程108 151.5 249 151.5 108m連續(xù)鋼桁梁架設(shè)專項施工方案[R]. 中鐵四局,合肥. 2017.
[14] 殷亮, 楊善紅,徐宏光. 淠河總干渠渡槽主體結(jié)構(gòu)方案設(shè)計與實踐[J]. 中國市政工程,2022,220(1):1-3.
[15] 楊善紅等,世界級水橋工程——引江濟淮工程淠河總干渠渡槽橋,橋梁雜志,https://www.sohu.com/ a/130138587_317644
[16] 成都建筑材料工業(yè)設(shè)計研究院有限公司,埃及蘇伊士運河EL-FERDAN大橋項目新橋橋梁轉(zhuǎn)體裝置試轉(zhuǎn)成功,http://www.cdi-china.com.cn/jcywz.nsf/0/728013320ADB5029482586A000097B75?opendocument
[17] 成都建筑材料工業(yè)設(shè)計研究院有限公司,蘇伊士運河El-Ferdan雙翼平轉(zhuǎn)開啟橋完成轉(zhuǎn)體驗收,https://baijiahao.baidu.com/s?id =17168486014 41440853&wfr=spider&for=pc
[18] Wikipedia: El Ferdan Railway Bridge,https://en.wikipedia.org/wiki/El_Ferdan_Railway_Bridge
[19] Bicheng Tang, Xuefeng Wang, Yuequan Zuo, Quan Zhang, Extradosed cable-stayed Pelje?ac Bridge in Croatia: Fabrication of steel box girders and on-site installation[J], Steel Construction, 2022,15(1):26-32
[20] 張泉,孫蕾蕾. 歐標最高等級鋼箱梁外觀質(zhì)量控制措施,寶橋橋梁技術(shù)交流https://mp.weixin. qq.com/s/2KbdajgJTjQTnzQ5A2GIaA
[21] 夏正春,嚴愛國,劉振標等. 南沙港鐵路洪奇瀝特大橋主橋設(shè)計[J],世界橋梁,2019,47(4),1-5
[22] 張雷, 張海榮, 孫大斌,等. 同江黑龍江鐵路特大橋設(shè)計[J]. 橋梁建設(shè), 2016, 46(2):5.
[23] 杜偉,車平,吳江波,李彥國. 高性能橋梁鋼Q690qE焊接技術(shù)研究,寶橋橋梁技術(shù)交流.
[24] 黃鑫,杜偉,吳江波.高性能橋梁鋼Q690qE焊接性試驗研究[J],焊接技術(shù),2020,49(5),33-35
[25] 國家市場監(jiān)督管理總局. 大線能量焊接用鋼:GB/T38817-2020 [S]. 北京: 中國標準出版社, 2020.
[26] 萬響亮, 吳開明, 王恒輝, 等. 氧化物冶金技術(shù)在大線能量焊接用鋼的應(yīng)用[J]. 中國冶金,2015,25(06): 6-12. DOI:10.13228/j. boyuan.issn1006-9356.20140188.
[27] 顧軍軍, 顧黎軍. 從設(shè)計角度談大線能量焊接用鋼的應(yīng)用[J]. 造船技術(shù),2017(03):76-80. DOI:1000-3878(2017)03-0076-05.
[28] 王丙興, 朱伏先, 王超, 等. 氧化物冶金在大線能量焊接用鋼中的應(yīng)用[J].鋼鐵,2019,54(09):13-21. DOI:10.13228/j. boyuan.isn0449-749x.20180435.
[29] Msa B, Ypa B, Cda B, et al. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere.
[30] Jd Fu, Shui W A, Ying Y B, et al. Accelerated corrosion behavior of weathering steel Q345qDNH for bridge in industrial atmosphere.
[31] Xx Xu, Tz Zhang, WW Wu, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo[J]. Construction and Building Materials, 279.
[32] Zhou L, Yang S. Investigation on crack propagation in band-like rust layers on weathering steel[J]. Construction and Building Materials, 2021, 281(1):122564.
[33] Ws Shi, BehrouzShafei, BrentPhares. Structural capacity and fatigue performance of ASTM A709 Grade 50CR steel[J]. Construction and Building Materials, 2020, 270.
[34] 郭宏超, 魏歡歡, 楊迪雄, 等. 海洋腐蝕環(huán)境下Q690高強鋼材疲勞性能試驗研究[J]. 土木工程學報,2021,54(5):36-45.
[35] 張宇, 鄭凱鋒, 衡俊霖, 等. 耐候鋼和高性能鋼腐蝕后疲勞性能2019年度研究進展[J]. 土木與環(huán)境工程學報(中英文), 2020, 42(05): 89-97.
[36] Zhang Y, Zheng K, Zhu J, et al. Research on corrosion and fatigue performance of weathering steel and High-Performance steel for bridges[J]. Construction and Building Materials, 289.
[37] 中鐵二院工程集團有限責任公司, 鐵路無涂裝耐候鋼橋設(shè)計指南: Q/73020712-6?22-2021[S]. 成都: 中鐵二院工程集團有限責任公司, 2021.
[38] 中鐵二院工程集團有限責任公司, 鐵路無涂裝耐候鋼橋維護技術(shù)指南: Q/73020712-6?23-2021[S]. 成都: 中鐵二院工程集團有限責任公司, 2021.
[39] 姜艷雯, 楊洮林. 高韌性耐候橋梁鋼焊接材料研制[J]. 石河子科技, 2021(03): 14-15. DOI:1008-0899(2021)06-0014-02.
[40] 李振華, 局曉峰, 居程亮. 高韌性耐候橋梁鋼焊接材料研制[J]. 機械制造文摘—焊接分冊, 2019(03):41-44.
[41] 韋林, 賀曉華. 新型異形鋼板切割件毛刺自動打磨機的設(shè)計[J]. 裝備制造技術(shù)2016,(10):63-65+83.
[42] 胡慶安, 張同舟, 鄔曉光, 等. Π形鋼板在橋梁加固工程中的應(yīng)用[J]. 公路, 2011(10): 98-101.
[43] 裴必達, 李立峰, 邵旭東,等. 鋼-UHPC輕型組合橋面板實橋試驗研究[J]. 湖南大學學報:自然科學版, 2019, 46(1):9.
[44] 張華, 孫雅洲, 舒先慶, 等. 正交異性鋼橋面板U肋內(nèi)焊技術(shù)[J]. 公路, 2018,63(09): 115-120.
[45] 鄭凱鋒, 衡俊霖, 何小軍, 等. 厚邊 U 肋正交異性鋼橋面的疲勞性能[J]. 西南交通大學學報, 2019,54(4): 694-700.
[46] 朱愛珠,李牧,田楊,肖海珠,何東升,張曉勇.設(shè)內(nèi)隔板正交異性鋼橋面板足尺模型疲勞試驗[J].鋼結(jié)構(gòu),2017,32(01):45-50.
[47] 劉益銘. 大縱肋正交異性鋼—高性能混凝土組合橋面板疲勞失效機理研究[D]. 成都: 西南交通大學, 2019.
[48] 齊藤史朗,山內(nèi)昭弘,坂野昌弘. 大型Uリブ鋼床版縦リブ橫リブ交差部の疲労耐久性の検討[C]. 土木學會第73回年次學術(shù)講演會. 2018.
[49] V. Singh, V. Pandey, S. Kumar, N.S. Srinivas, K. Chattopadhyay, Effect of ultrasonic shot peening on surface microstructure and fatigue behavior of structural alloys, T. Indian I. Metals, 69 (2016) 295-301.
[50] M. Ramulu, S. Kunaporn, M. Jenkins, M. Hashish, J. Hopkins, Fatigue performance of high-pressure waterjet-peened aluminum alloy, J. Pressure Vessel Technol., 124 (2002) 118-123.
[51] A.G. Olabi, M.S.J. Hashmi, The effect of post-weld heat-treatment on mechanical-properties and residual-stresses mapping in welded structural steel, J. Mater. Process. Tech., 55 (1995) 117-122.
[52] X. Feng, K. Zheng, J. Heng, J. Zhu, X. He, Fatigue performance of rib-to-deck joints in orthotropic steel deck with PWHT, J. Constr. Steel Res. (Under review)
[53] 鄭凱鋒, 衡俊霖,茍超. 昨天、今天與明天—中國正交異性鋼橋面橋梁早期所作的突出技術(shù)貢獻[J]. 橋梁, 2015, 4:1-8.
[54] 段蘭, 王春生, 翟慕賽,等. 基于聲發(fā)射技術(shù)的鋼橋面板疲勞損傷監(jiān)測與評估[J]. 交通運輸工程學報, 2020, 20(1):14.
[55] Xu Y , Bao Y , Chen J , et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images[J]. Structural Health Monitoring, 2019, 18(3):653-674.
[56] 周建庭, 張森華, 張洪. 磁測法在橋梁隱蔽病害檢測中的研究進展[J]. 土木工程學報, 2021, 54(11):10.
[57] 溝上善昭, 奧村淳弘, 大藤時秀, 和泉遊以, 阪上隆英, 赤外線サーモグラフィを用いた溫度ギャップ法によるUリブ鋼床版のビード貫通亀裂の自動検出と裝置開発, 構(gòu)造工學論文集 A, 2018, 64A 巻, p. 573-582
[58] 野口博之. 鋼繊維補強コンクリートを用いた道路橋鋼床版の補強法および耐疲労性の評価に関する研究[D]. 東京: 日本大學, 2019.
[59] 村越潤,森猛,幅三四郎,小野秀一,佐藤歩,高橋?qū)g:デッキ進展き裂を有する鋼床版に対するSFRC舗裝のき裂進展抑制効果,土木學會論文集A1(構(gòu)造?地震工學), 2019, Vol.75, No.2,pp.194-205.
[60] 舘石和雄, 判治剛, 石川敏之, 引張または曲げ荷重を受ける溶接継手に対するICR 処理の効果,構(gòu)造工學論文集, 2015, Vol.61A, pp.627-637.
[61] 李宏男, 董皓璐, 李超. 基于全壽命周期抗震性能的橋梁結(jié)構(gòu)維修決策方法研究進展[J]. 中國公路學報, 2020, 33(2): 1-14.
[62] 谷音, 黃威, 卓衛(wèi)東. 基于全壽命周期成本分析的橋梁設(shè)計研究綜述[J]. 公路交通科技, 2011, 28(6): 67-74.
[63] 邵旭東, 彭建新, 晏班夫. 基于橋梁全壽命總成本優(yōu)化的設(shè)計研究綜述[C]//第十七屆全國橋梁學術(shù)會議集. 北京: 人民交通出版社, 2006.
[64] Frangopol D M, Lin K Y, Estes A C. Life-cycle cost design of deteriorating structures[J]. Journal of Structural Engineering, 1997, 123(10): 1390-1401.
[65] Frangopol D M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges [J]. Structure and Infrastructure Engineering, 2011, 7(6): 389-413.
[66] Frangopol D M, Liu M. Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost[J]. Structure and Infrastructure Engineering, 2007, 3(1): 29-41.
[67] Frangopol D M, Soliman M. Life-cycle of structural systems: recent achievements and future directions[J]. Structure and Infrastructure Engineering, 2016, 12(1): 1-20.
[68] Frangopol D M, Kim S. Bridge Safety, Maintenance and management in a life-cycle context[M]. CRC Press, 2022.
[69] Han X, Yang D Y, Frangopol D M. Risk-based life-cycle optimization of deteriorating steel bridges: Investigation on the use of novel corrosion resistant steel[J]. Advances in Structural Engineering, 2021, 24(8): 1668-1686.
[70] Han X, Yang D Y, Frangopol D M. Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost[J]. Engineering Structures, 2021, 243: 112633.
[71] Mashhadi A H, Azad A R G, Tavakolan M. Life cycle cost comparison of strengthening a steel bridge using post-installed shear connectors with bridge reconstruction[J]. International Journal of Construction Management, 2021: 1-12.
[72] Liu C, Qian Z, Liao Y, et al. A comprehensive life-cycle cost analysis approach developed for steel bridge deck pavement schemes[J]. Coatings, 2021, 11(5): 565.
[73] Sacconi S, Venanzi I, Ierimonti L, et al. Fatigue reliability assessment and life-cycle cost analysis of roadway bridges equipped with weigh-in-motion systems[J]. Structure and Infrastructure Engineering, 2021: 1-17.
[74] Sacconi S, Ierimonti L, Venanzi I, et al. Life-cycle cost analysis of bridges subjected to fatigue damage[J]. Journal of Infrastructure Preservation and Resilience, 2021, 2(1): 1-13.
[75] Mortagi M, Ghosh J. Consideration of climate change effects on the seismic life-cycle cost analysis of deteriorating highway bridges[J]. Journal of Bridge Engineering, 2022, 27(2): 04021103.
[76] Lee C Y. Application of High performance coatings for service life extension of steel bridge coatings[J]. Corrosion Science and Technology, 2021, 20(4): 169-174.
[77] Cheng M, Frangopol D M. Life-cycle optimization of structural systems based on cumulative prospect theory: effects of the reference point and risk attitudes[J]. Reliability Engineering & System Safety, 2022, 218: 108100.
[78] Yang D Y. Adaptive Risk-based life-cycle management for large-scale structures using deep reinforcement learning and surrogate modeling[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021126.
[79] Kim S, Ge B, Frangopol D M. Optimum bridge life-cycle management with updating based on inspected fatigue crack under uncertainty[M]//Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations. CRC Press, 2021: 1014-1020.
[80] Han X, Frangopol D M. Life-cycle connectivity-based maintenance strategy for bridge networks subjected to corrosion considering correlation of bridge resistances[J]. Structure and Infrastructure Engineering, 2021: 1-24.
[81] Li L, Mahmoodian M, Khaloo A, et al. Risk-cost optimized maintenance strategy for steel bridge subjected to deterioration[J]. Sustainability, 2022, 14(1): 436.
[82] Calvert G, Neves L, Andrews J, et al. Incorporating defect specific condition indicators in a bridge life cycle analysis[J]. Engineering Structures, 2021, 246: 113003.
[83] Rathore A, Garg R K. Assessing resilience of transportation networks under multi-hazards: a review[J]. Sustainable Cities and Resilience, 2022: 29-43.
[84] Wang Z, Dong Y, Jin W. Life-cycle cost analysis of deteriorating civil infrastructures incorporating social sustainability[J]. Journal of Infrastructure Systems, 2021, 27(3): 04021013.
[85] Camara A. Vehicle–bridge interaction and driving accident risks under skew winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021,214: 104672.
[86] Chao J, Chong W A, Csc B, et al. Fatigue analysis of stay cables on the long-span bridges under combined action of traffic and wind[J]. Engineering Structures, 2020, 207: 110212
[87] Zhu J, Xiong Z, Xiang H , et al. Ride comfort evaluation of stochastic traffic flow crossing long-span suspension bridge experiencing vortex-induced vibration. [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 219: 104794.
[88] Xiong Z, Zhu J, Zheng K , et al. Framework of wind-traffic-bridge coupled analysis considering realistic traffic behavior and vehicle inertia force[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205:104322.
[89] Xiong Z, Zhu J , Wu M , et al. Influence of Vehicle Inertia Force on Vertical Vibration of Long-Span Suspension Bridge under Wind and Traffic Loads[J]. Journal of Bridge Engineering, 2022, 27(3): 04021111.
[90] Bao Y, Zhai W, Cai C, et al. Dynamic interaction analysis of suspended monorail vehicle and bridge subject to crosswinds[J]. Mechanical Systems and Signal Processing, 2021, 156(2):107707.
[91] Fang C, H Tang, Li Y, et al. Stochastic response of a cable-stayed bridge under non-stationary winds and waves using different surrogate models[J]. Ocean Engineering, 2020, 199: 106967.
[92] 李巖,張振浩,林國偉,林雪琦,丁勇,葉長允.基礎(chǔ)沖刷對多種車激作用下橋梁動力行為的影響[J].哈爾濱工業(yè)大學學報,2021,53(09):17-25.
[93] 陳星宇,徐昕宇,宋曉東,鄭曉龍,周永禮.考慮附加變形的公路-磁浮合建橋車橋耦合動力響應(yīng)研究[J].橋梁建設(shè),2021,51(02):71-77.
[94] 朱勁松,香超,祁海東.考慮車橋耦合效應(yīng)的大跨懸索橋鋼-混組合梁疲勞損傷評估[J].振動與沖擊,2021,40(05):218-229.DOI:10.13465/j.cnki.jvs.2021.05.029.
[95] 朱金,吳夢雪,尹力,李永樂.隨機車流-風聯(lián)合作用下沿海大跨度斜拉橋拉索疲勞壽命預(yù)測[J].中國公路學報,2020,33(11):182-194.DOI:10.19721/j.cnki.1001-7372.2020.11.016.
[96] LIU Xiaodong, HAN Wanshui, YUAN Yangguang, et al. Corrosion fatigue assessment and reliability analysis of short suspender of suspension bridge depending on refined traffic and wind load condition[J]. Engineering Structures, 2021, 234: 111950.
[97] LIU Xiaodong, HAN Wanshui, Guo Xuelian, et al. Fatigue lifespan assessment of stay cables by a refined joint probability density model of wind speed and direction[J]. Engineering Structures, 2022, 252: 113608
[98] 王靜妤, 袁萬城. 地震爆炸聯(lián)合作用下橋梁響應(yīng)與損傷的數(shù)值模擬[J]. 哈爾濱工程大學學報, 2020, 41(5):7.
[99] 李鵬浩,李忠龍,朱勝陽,牛津,婁會彬.冰擊荷載作用下高速車輛-軌道-橋梁系統(tǒng)耦合振動分析[J].中國公路學報,2021,34(04):187-197.DOI:10.19721/j.cnki.1001-7372.2021.04.016.
[100] Ma X, Zhang W. Dynamic amplification responses of short span bridges considering scour and debris impacts[J]. Engineering Structures, 2022, 252: 113644.
[101] 王亞偉,鄭凱鋒,熊籽躒,朱金,馮霄暘,雷鳴.地震與風聯(lián)合作用下大跨橋梁車-橋耦合振動分析[J].中國公路學報,2021,34(02):298-308.DOI:10.19721/j.cnki.1001-7372.2021.02.018.
[102] 江輝, 王敏, 曾聰,等. 分級地震下跨斷層高鐵簡支梁橋行車安全與抗震設(shè)計優(yōu)化研究[J]. 工程力學, 2020, 37(10):15.
聯(lián)系客服