大數(shù)據(jù)是什么?為什么要使用大數(shù)據(jù)?大數(shù)據(jù)有哪些流行的工具?本文將為您解答。
現(xiàn)在,大數(shù)據(jù)是一個(gè)被濫用的流行詞,但是它真正的價(jià)值甚至是一個(gè)小企業(yè)都可以實(shí)現(xiàn)。
通過整合不同來源的數(shù)據(jù),比如:網(wǎng)站分析、社交數(shù)據(jù)、用戶、本地?cái)?shù)據(jù),大數(shù)據(jù)可以幫助你了解的全面的情況。大數(shù)據(jù)分析正在變的越來越容易,成本越來越低,而且相比以前能更容易的加速對(duì)業(yè)務(wù)的理解。
大數(shù)據(jù)通常與企業(yè)商業(yè)智能(BI)和數(shù)據(jù)倉(cāng)庫(kù)有共同的特點(diǎn):高成本、高難度、高風(fēng)險(xiǎn)。
以前的商業(yè)智能和數(shù)據(jù)倉(cāng)庫(kù)的舉措是失敗的,因?yàn)樗麄冃枰ㄙM(fèi)數(shù)月甚至是數(shù)年的時(shí)間才能讓股東得到可以量化的收益。然而事實(shí)并非如此,實(shí)際上你可以在當(dāng)天就獲得真實(shí)的意圖,至少是在數(shù)周內(nèi)。
為什么使用大數(shù)據(jù)?
數(shù)據(jù)在呈爆炸式的速度增長(zhǎng)。其中一個(gè)顯著的例子來自于我們的客戶,他們大多使用谷歌分析。當(dāng)他們分析一個(gè)長(zhǎng)時(shí)間段數(shù)據(jù)或者使用高級(jí)細(xì)分時(shí),谷歌分析的數(shù)據(jù)開始進(jìn)行抽樣,這會(huì)使得數(shù)據(jù)的真正價(jià)值被隱藏。
現(xiàn)在我們的工具Clickstreamr可以收集點(diǎn)擊級(jí)的巨量的數(shù)據(jù),因此你可以追蹤用戶在他們?cè)L問路徑(或者訪問流)中的每一個(gè)點(diǎn)擊行為。另外,如果你加入一些其他的數(shù)據(jù)源,他就真正的變成了大數(shù)據(jù)。
更完整的解析
現(xiàn)在你已經(jīng)被這些知識(shí)武裝起來了,那就是如何有效的設(shè)定和獲取更多高價(jià)值的用戶。
類似Tableau和谷歌這樣的公司給用戶帶來了更加強(qiáng)大的數(shù)據(jù)分析工具(比如:大數(shù)據(jù)分析)。Tableau提供了一個(gè)可視化分析軟件的解決方案,每年的價(jià)格是2000美金。谷歌提供了BigQuery工具,他可以允許你在數(shù)分鐘內(nèi)分析你的數(shù)據(jù),并且可以滿足任何的預(yù)算要求。
大數(shù)據(jù)是什么?
由于大數(shù)據(jù)往往是一個(gè)混合結(jié)構(gòu)、半結(jié)構(gòu)化和非結(jié)構(gòu)化的數(shù)據(jù),因此大數(shù)據(jù)變得難以關(guān)聯(lián)、處理和管理,特別是和傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)。當(dāng)談到大數(shù)據(jù)的時(shí)候,高德納公司(Gartner Group,成立于1979年,它是第一家信息技術(shù)研究和分析的公司)的分析師把它分成個(gè)3個(gè)V加以區(qū)分:
量級(jí)(Volume):大量的數(shù)據(jù)
速率(Velocity):高速的數(shù)據(jù)產(chǎn)出
多樣性(Variety):多種類型和來源的數(shù)據(jù)。
正如我們所說,大部分的企業(yè)每一天在不同的領(lǐng)域都在產(chǎn)出大量的數(shù)據(jù)。這里給出一組樣本數(shù)據(jù)的來源及類型,他們都是企業(yè)在做大數(shù)據(jù)分析時(shí)潛在的收集和聚合數(shù)據(jù)的方式:
網(wǎng)站分析
移動(dòng)分析
設(shè)備/傳感器數(shù)據(jù)
用戶數(shù)據(jù)(CRM)
統(tǒng)一的企業(yè)數(shù)據(jù)(ERP)
社交數(shù)據(jù)
會(huì)計(jì)系統(tǒng)
銷售點(diǎn)系統(tǒng)
銷售體系
消費(fèi)者數(shù)據(jù)(例如益佰利的數(shù)據(jù)、鄧氏商聯(lián)的數(shù)據(jù)或者普查數(shù)據(jù))
公司內(nèi)部電子表格
公司內(nèi)部數(shù)據(jù)庫(kù)
位置數(shù)據(jù)(空間位置、GPS定位的位置)
天氣數(shù)據(jù)
但是針對(duì)無限的數(shù)據(jù)來源,不要去做太多事情。把焦點(diǎn)放在相關(guān)的數(shù)據(jù)上,并且從小的數(shù)據(jù)開始。通常以2-3種數(shù)據(jù)源開始是一個(gè)好的建議,比如網(wǎng)站數(shù)據(jù)、消費(fèi)者數(shù)據(jù)和CRM,這些會(huì)讓你得到一些有價(jià)值的見解。在你最初進(jìn)入大數(shù)據(jù)分析之后,你可以開始添加數(shù)據(jù)源來促進(jìn)你的分析,并且公布更多的分析結(jié)果。
想要獲得更多關(guān)于大數(shù)據(jù)細(xì)節(jié)的知識(shí),可以去查閱維基百科的大數(shù)據(jù)詞條。
大數(shù)據(jù)的好處
大數(shù)據(jù)提供了一種識(shí)別和利用高價(jià)值機(jī)會(huì)的前瞻性方法。如果你想,那么大數(shù)據(jù)可以提供如下好處:
根據(jù)數(shù)據(jù)背景獲得更完整的情況
利用數(shù)據(jù)驅(qū)動(dòng)做出更好的商業(yè)決策
降低商業(yè)風(fēng)險(xiǎn)
市場(chǎng)上最好的解決方案
開發(fā)出更好的定制化產(chǎn)品或服務(wù)
更好的預(yù)測(cè)客戶的需求和想法
迅速適應(yīng)市場(chǎng)
在實(shí)時(shí)數(shù)據(jù)的趨勢(shì)和預(yù)測(cè)上更加主動(dòng)
建立精確的生命價(jià)值周期(LTV)、地圖和用戶類型
閱讀更長(zhǎng)和更復(fù)雜的屬性窗口(用于網(wǎng)站點(diǎn)擊流數(shù)據(jù))
對(duì)通過細(xì)分的更復(fù)雜的導(dǎo)航進(jìn)行可視化,并且改善你的轉(zhuǎn)化漏斗(用于網(wǎng)站點(diǎn)擊流數(shù)據(jù))
并不適用所有人
請(qǐng)記住,大數(shù)據(jù)分析并不適合所有人。如果你沒有安裝并且制定分析中的目標(biāo)、沒有準(zhǔn)備好歸因模型、再營(yíng)銷和高級(jí)細(xì)分,那么你就沒有為大數(shù)據(jù)做好準(zhǔn)備。
如果你把谷歌分析使用到了極限,特別是由于他的采樣數(shù)據(jù)。那么你已經(jīng)準(zhǔn)備好接觸大數(shù)據(jù)的皮毛了。
入門級(jí)大數(shù)據(jù)解決方案
目前有一大批面向企業(yè)級(jí)的大數(shù)據(jù)解決方案,比如甲骨文、SAP,、IBM、EMC和惠普。但是。這篇文章是面向?qū)ふ胰腴T級(jí)大數(shù)據(jù)解決方案的中小型企業(yè)的讀者。下面我們將討論數(shù)據(jù)分析的輸出,并且分享兩個(gè)相對(duì)廉價(jià)的解決方案,從而幫助你開始使用大數(shù)據(jù)分析。
分析結(jié)果的輸出
目前對(duì)于大多數(shù)企業(yè)而言,數(shù)據(jù)分析主要還是針對(duì)核心數(shù)據(jù)。然而在未來,數(shù)據(jù)分析將不會(huì)采用采樣數(shù)據(jù),并且會(huì)結(jié)合其他來源的數(shù)據(jù),使用更加復(fù)雜的工具(比如Tableau)去分析他。谷歌分析是一個(gè)偉大的工具,但是你能獲得的結(jié)果目前已經(jīng)到達(dá)極致了。
匯總數(shù)據(jù)的第一步往往是你輸出數(shù)據(jù)分析的過程。
如果你是一個(gè)谷歌分析高級(jí)版的用戶,這將很容易被推進(jìn)。因?yàn)楣雀璺治龈呒?jí)版集成了BigQuery功能來幫助企業(yè)推動(dòng)大數(shù)據(jù)分析。(學(xué)習(xí)更多的關(guān)于數(shù)據(jù)分析及BigQuery的集成)
如果你是一個(gè)谷歌分析標(biāo)準(zhǔn)版的用戶,也不用擔(dān)心。我們已經(jīng)開發(fā)了一個(gè)工具,它可以導(dǎo)出未采樣的谷歌分析數(shù)據(jù),并且把數(shù)據(jù)推送到BigQuery,或者其他的可以做大數(shù)據(jù)分析的數(shù)據(jù)倉(cāng)庫(kù)或者數(shù)據(jù)工具中。
(注:你可能也注意到了其他的可以導(dǎo)出谷歌分析未采樣數(shù)據(jù)的工具,但是不同的是,這是我們的主要工作。作為一個(gè)谷歌分析工具的咨詢公司,我們不得不經(jīng)常幫助客戶導(dǎo)出未采樣的數(shù)據(jù)做報(bào)告用。但是當(dāng)我們發(fā)現(xiàn)了其他工具的一些問題時(shí),我們不得不自己創(chuàng)建一個(gè)更可靠的解決方案。)
一旦你導(dǎo)出了你的數(shù)據(jù),你可以做好準(zhǔn)備把它導(dǎo)入到一個(gè)大數(shù)據(jù)分析工具中進(jìn)行存儲(chǔ)、處理和可視化。這就給我們帶來了最好的入門級(jí)大數(shù)據(jù)解決方案。
谷歌大數(shù)據(jù)解決方案
谷歌BigQuery是一個(gè)網(wǎng)絡(luò)服務(wù),它能夠讓你執(zhí)行數(shù)十億行的大規(guī)模的數(shù)據(jù)集的交互分析。重要的是它很容易使用,并且允許精明的用戶根據(jù)需求開發(fā)更加大的功能。
BigQuery采用你容易承受的按需定價(jià)的原則,當(dāng)你開始存儲(chǔ)和處理你的大數(shù)據(jù)查詢時(shí),每個(gè)月的花費(fèi)只有幾百美金。事實(shí)上,每個(gè)月前100GB的數(shù)據(jù)處理是免費(fèi)的。隨著你需求的增長(zhǎng),你可以拓展你的數(shù)據(jù)需求,并且為這部分需求買單。最好的消息是,BigQuery使得大數(shù)據(jù)存儲(chǔ)和處理適用于所有人。
Tableau大數(shù)據(jù)解決方案
Tableau提供了4個(gè)強(qiáng)大的功能(也許更多)來促進(jìn)大數(shù)據(jù)分析和預(yù)測(cè)分析。
Salesforce連接器允許你輕松的連接CRM和銷售數(shù)據(jù)(更快、更容易的連接CRM和銷售數(shù)據(jù),所以如果你使用Salesforce,沒有什么理由不加入大數(shù)據(jù))
谷歌分析鏈接可以幫助你更容易的創(chuàng)建自定義的儀表盤和報(bào)告(然而這個(gè)功能依舊需要升級(jí)才能變的更好)
谷歌BigQuery連接器可以快速的分析在谷歌免費(fèi)的網(wǎng)絡(luò)服務(wù)中的大量數(shù)據(jù)。
為任何點(diǎn)擊行為的分析添加預(yù)測(cè)的功能(真正快速的預(yù)測(cè))
數(shù)據(jù)分析師是關(guān)鍵
企業(yè)想要利用大數(shù)據(jù),是需要一個(gè)數(shù)據(jù)分析師的。他必須知道不同數(shù)據(jù)的用法,并且要授予工具連接數(shù)據(jù)的權(quán)限。
當(dāng)一個(gè)數(shù)據(jù)分析師使用BigQuery或者Tableau來完成提取和合并數(shù)據(jù)時(shí),他們可以發(fā)現(xiàn)在大型數(shù)據(jù)集合當(dāng)中的隱藏的模式。這才是大數(shù)據(jù)分析的關(guān)鍵。它可以是決策者做出更好的決策,并且加強(qiáng)了更精細(xì)顆粒度的數(shù)據(jù)段的識(shí)別。
利用這個(gè)新技能,你可以發(fā)現(xiàn)不同的用戶與網(wǎng)站的互動(dòng)行為。你可以在谷歌分析中以此來創(chuàng)建新的高級(jí)細(xì)分規(guī)則并且針對(duì)你的市場(chǎng)或者網(wǎng)站活動(dòng)做出更高的價(jià)值分析。
發(fā)現(xiàn)不明情況內(nèi)的價(jià)值
你的很多不同的數(shù)據(jù)隱藏不明的情況,這些是希望被發(fā)現(xiàn)并告知的。開始把網(wǎng)站分析、CRM、社交數(shù)據(jù)、位置數(shù)據(jù)等不同的數(shù)據(jù)源進(jìn)行結(jié)合。這會(huì)使你的數(shù)據(jù)有了相關(guān)的背景,并且允許你通過數(shù)據(jù)看到一個(gè)更加完整的情況。這一定會(huì)讓你勝出競(jìng)爭(zhēng)對(duì)手。
為了說明這點(diǎn),我們舉個(gè)例子,通過大數(shù)據(jù)分析匯總社交數(shù)據(jù)、位置數(shù)據(jù)、客戶數(shù)據(jù)、銷售數(shù)據(jù),你可以發(fā)現(xiàn)在舊金山的社會(huì)化媒體的趨勢(shì)。這使你可以利用用戶需求的增加來增加特定地區(qū)的庫(kù)存。
不要忘了大數(shù)據(jù)分析的黃金法則:關(guān)注點(diǎn),在正確的時(shí)間關(guān)注正確的商業(yè)問題。
聯(lián)系客服