中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
AI算法:邏輯回歸原理與實現(xiàn)

1、算法思想

線性回歸可以對數(shù)據(jù)進行線性擬合,擬合后的模型可以輸出連續(xù)的值。由于它沒有范圍,因此不適合與分類問題。邏輯回歸用于離散變量的分類問題,其輸出值為屬于某一類的概率,主要用于類的判別。

2、算法推導(dǎo)

2.1 邏輯回歸

對于線性回歸的預(yù)測函數(shù)為:

其中,


圖1. sigmoid函數(shù)

圖2. 邏輯回歸示意圖

由圖1所示:

當(dāng)

時,

當(dāng)

時,
。

因此,函數(shù)的輸出值在0-1之間。

對于邏輯回歸:

當(dāng)

,這時應(yīng)為類別1;

當(dāng)

,這時應(yīng)為類別0。

因此,預(yù)測輸出

為在輸入
與參數(shù)
條件下預(yù)測類別為1的概率。

例如,對于給定的

所求得的概率為
,則輸出類別1的概率為0.7,相應(yīng)的類別0的概率為0.3。

2.2 損失函數(shù)

對于線性回歸模型,我們定義的代價函數(shù)是所有模型誤差的平方和。理論上來說,我們也可以對邏輯回歸模型沿用這個定義,但是問題在于,當(dāng)我們將下述公式

帶入到線性回歸的損失函數(shù)中會得到圖3. 非凸函數(shù),梯度下降法會得到局部最小值。因此,需要重新設(shè)計損失函數(shù)。

圖3. 非凸函數(shù)

采用BCE (Binary Cross Entropy)二分類交叉熵?fù)p失函數(shù)。

其中,

為樣本個數(shù)。

為類別1的真實值,

為類別0的預(yù)測值。

因此:

當(dāng)

時,

import numpy as npimport seabornimport matplotlib.pyplot as pltx = np.arange(0.1, 1, .01)y = -np.log(x)seaborn.lineplot(x=x, y=y)plt.show()

圖4. 類別1損失函數(shù)

由圖4類別1的損失函數(shù),隨著預(yù)測值

增加loss逐漸減小,預(yù)測值為1時,loss=0。

當(dāng)y=0時,


import numpy as npimport seabornimport matplotlib.pyplot as pltx = np.arange(0.1, 1, .01)y = -np.log(1-x)seaborn.lineplot(x=x, y=y)plt.show()

圖5. 類別0損失函數(shù)

由圖5類別0的損失函數(shù),隨著預(yù)測值

減小loss逐漸減小,預(yù)測值為
時,loss=0。

2.3 求解方法

?詳細(xì)推導(dǎo)如下:

可以使用梯度下降法對參數(shù)進行更新

3、算法實現(xiàn)

?代碼如下:

(1)logistic_regression.py

# -*- coding: utf-8 -*-import numpy as npclass LogisticRegression(object): def __init__(self, learning_rate=0.1, max_iter=100, seed=None): self.seed = seed self.lr = learning_rate self.max_iter = max_iter def fit(self, x, y): np.random.seed(self.seed) self.w = np.random.normal(loc=0.0, scale=1.0, size=x.shape[1]) self.b = np.random.normal(loc=0.0, scale=1.0) self.x = x self.y = y for i in range(self.max_iter): self._update_step() # print('loss: \t{}'.format(self.loss())) # print('score: \t{}'.format(self.score())) # print('w: \t{}'.format(self.w)) # print('b: \t{}'.format(self.b)) def _sigmoid(self, z): return 1.0 / (1.0 + np.exp(-z)) def _f(self, x, w, b): z = x.dot(w) + b return self._sigmoid(z) def predict_proba(self, x=None): if x is None: x = self.x y_pred = self._f(x, self.w, self.b) return y_pred def predict(self, x=None): if x is None: x = self.x y_pred_proba = self._f(x, self.w, self.b) y_pred = np.array([0 if y_pred_proba[i] < 0.5 else 1 for i in range(len(y_pred_proba))]) return y_pred def score(self, y_true=None, y_pred=None): if y_true is None or y_pred is None: y_true = self.y y_pred = self.predict() acc = np.mean([1 if y_true[i] == y_pred[i] else 0 for i in range(len(y_true))]) return acc def loss(self, y_true=None, y_pred_proba=None): if y_true is None or y_pred_proba is None: y_true = self.y y_pred_proba = self.predict_proba() return np.mean(-1.0 * (y_true * np.log(y_pred_proba) + (1.0 - y_true) * np.log(1.0 - y_pred_proba))) def _calc_gradient(self): y_pred = self.predict() d_w = (y_pred - self.y).dot(self.x) / len(self.y) d_b = np.mean(y_pred - self.y) return d_w, d_b def _update_step(self): d_w, d_b = self._calc_gradient() self.w = self.w - self.lr * d_w self.b = self.b - self.lr * d_b return self.w, self.b

(2)train_test_lr.py

# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as pltimport data_helperfrom logistic_regression import *# data generationx, y = data_helper.generate_data(seed=272)x_train, y_train, x_test, y_test = data_helper.train_test_split(x, y)# visualize data# plt.scatter(x_train[:,0], x_train[:,1], c=y_train, marker='.')# plt.show()# plt.scatter(x_test[:,0], x_test[:,1], c=y_test, marker='.')# plt.show()# data normalizationx_train = (x_train - np.min(x_train, axis=0)) / (np.max(x_train, axis=0) - np.min(x_train, axis=0))x_test = (x_test - np.min(x_test, axis=0)) / (np.max(x_test, axis=0) - np.min(x_test, axis=0))# Logistic regression classifierclf = LogisticRegression(learning_rate=0.1, max_iter=500, seed=272)clf.fit(x_train, y_train)# plot the resultsplit_boundary_func = lambda x: (-clf.b - clf.w[0] * x) / clf.w[1]xx = np.arange(0.1, 0.6, 0.1)plt.scatter(x_train[:,0], x_train[:,1], c=y_train, marker='.')plt.plot(xx, split_boundary_func(xx), c='red')plt.show()# loss on test sety_test_pred = clf.predict(x_test)y_test_pred_proba = clf.predict_proba(x_test)print(clf.score(y_test, y_test_pred))print(clf.loss(y_test, y_test_pred_proba))# print(y_test_pred_proba)
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
Python實現(xiàn)機器學(xué)習(xí)算法——Ridge嶺回歸
基于XGBoost和EMD的時序預(yù)測實現(xiàn)
經(jīng)典機器學(xué)習(xí)算法-第三章LDA線性判別
用Python實現(xiàn)機器學(xué)習(xí)算法——Softmax 回歸算法
小姐姐帶你一起學(xué):如何用Python實現(xiàn)7種機器學(xué)習(xí)算法(附代碼)
非線性回歸
更多類似文章 >>
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服