摘要:CRC(Cyclic Redundancy Check)被廣泛用于數(shù)據(jù)通信過(guò)程中的差錯(cuò)檢測(cè),具有很強(qiáng)的
檢錯(cuò)能力。本文詳細(xì)介紹了CRC的基本原理,并且按照解釋通行的查表算法的由來(lái)的思路介紹
了各種具體的實(shí)現(xiàn)方法。
1.差錯(cuò)檢測(cè)
----------
數(shù)據(jù)通信中,接收端需要檢測(cè)在傳輸過(guò)程中是否發(fā)生差錯(cuò),常用的技術(shù)有奇偶校驗(yàn)(Parity
Check),校驗(yàn)和(Checksum)和CRC(Cyclic Redundancy Check)。它們都是發(fā)送端對(duì)消息按照
某種算法計(jì)算出校驗(yàn)碼,然后將校驗(yàn)碼和消息一起發(fā)送到接收端。接收端對(duì)接收到的消息按
照相同算法得出校驗(yàn)碼,再與接收到的校驗(yàn)碼比較,以判斷接收到消息是否正確。
奇偶校驗(yàn)只需要1位校驗(yàn)碼,其計(jì)算方法也很簡(jiǎn)單。以奇檢驗(yàn)為例,發(fā)送端只需要對(duì)所有消息
位進(jìn)行異或運(yùn)算,得出的值如果是0,則校驗(yàn)碼為1,否則為0。接收端可以對(duì)消息進(jìn)行相同計(jì)
算,然后比較校驗(yàn)碼。也可以對(duì)消息連同校驗(yàn)碼一起計(jì)算,若值是0則有差錯(cuò),否則校驗(yàn)通過(guò)。
通常說(shuō)奇偶校驗(yàn)可以檢測(cè)出1位差錯(cuò),實(shí)際上它可以檢測(cè)出任何奇數(shù)位差錯(cuò)。
校驗(yàn)和的思想也很簡(jiǎn)單,將傳輸?shù)南?dāng)成8位(或16/32位)整數(shù)的序列,將這些整數(shù)加起來(lái)
而得出校驗(yàn)碼,該校驗(yàn)碼也叫校驗(yàn)和。校驗(yàn)和被用在IP協(xié)議中,按照16位整數(shù)運(yùn)算,而且其
MSB(Most Significant Bit)的進(jìn)位被加到結(jié)果中。
顯然,奇偶校驗(yàn)和校驗(yàn)和都有明顯的不足。奇偶校驗(yàn)不能檢測(cè)出偶數(shù)位差錯(cuò)。對(duì)于校驗(yàn)和,
如果整數(shù)序列中有兩個(gè)整數(shù)出錯(cuò),一個(gè)增加了一定的值,另一個(gè)減小了相同的值,這種差錯(cuò)
就檢測(cè)不出來(lái)。
2.CRC算法的基本原理
-------------------
CRC算法的是以GF(2)(2元素伽羅瓦域)多項(xiàng)式算術(shù)為數(shù)學(xué)基礎(chǔ)的,聽起來(lái)很恐怖,但實(shí)際上它
的主要特點(diǎn)和運(yùn)算規(guī)則是很好理解的。
GF(2)多項(xiàng)式中只有一個(gè)變量x,其系數(shù)也只有0和1,如:
1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 1*x^2 +1*x^1 + 1*x^0
即:
x^7 + x^5 + x^2 + x + 1
(x^n表示x的n次冪)
GF(2)多項(xiàng)式中的加減用模2算術(shù)執(zhí)行對(duì)應(yīng)項(xiàng)上系數(shù)的加減,模2就是加減時(shí)不考慮進(jìn)位和借位,
即:
0 + 0 = 0 0 - 0 = 0
0 + 1 = 1 0 - 1 = 1
1 + 0 = 1 1 - 0 = 1
1 + 1 = 0 1 - 1 = 0
顯然,加和減是一樣的效果(故在GF(2)多項(xiàng)式中一般不出現(xiàn)"-"號(hào)),都等同于異或運(yùn)算。例
如P1 = x^3 + x^2 + 1,P2 = x^3 + x^1 + 1,P1 + P2為:
x^3 + x^2 + 1
+ x^3 + x + 1
------------------
x^2 + x
GF(2)多項(xiàng)式乘法和一般多項(xiàng)式乘法基本一樣,只是在各項(xiàng)相加的時(shí)候按模2算術(shù)進(jìn)行,例如
P1 * P2為:
(x^3 + x^2 + 1)(x^3 + x^1 + 1)
= (x^6 + x^4 + x^3
+ x^5 + x^3 + x^2
+ x^3 + x + 1)
= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
GF(2)多項(xiàng)式除法也和一般多項(xiàng)式除法基本一樣,只是在各項(xiàng)相減的時(shí)候按模2算術(shù)進(jìn)行,例
如P3 = x^7 + x^6 + x^5 + x^2 + x,P3 / P2為:
x^4 + x^3 + 1
------------------------------------------
x^3 + x + 1 )x^7 + x^6 + x^5 + x^2 + x
x^7 + x^5 + x^4
---------------------
x^6 + x^4
x^6 + x^4 + x^3
---------------------
x^3 + x^2 + x
x^3 + x + 1
-----------------
x^2 + 1
CRC算法將長(zhǎng)度為m位的消息對(duì)應(yīng)一個(gè)GF(2)多項(xiàng)式M,比如對(duì)于8位消息11100110,如果先傳輸
MSB,則它對(duì)應(yīng)的多項(xiàng)式為x^7 + x^6 + x^5 + x^2 + x。發(fā)送端和接收端約定一個(gè)次數(shù)為r的
GF(2)多項(xiàng)式G,稱為生成多項(xiàng)式,比如x^3 + x + 1,r = 3。在消息后面加上r個(gè)0對(duì)應(yīng)的多
項(xiàng)式為M',顯然有M' = Mx^r。用M'除以G將得到一個(gè)次數(shù)等于或小于r - 1的余數(shù)多項(xiàng)式R,
其對(duì)應(yīng)的r位數(shù)值則為校驗(yàn)碼。如下所示:
11001100
-------------
1011 )11100110000
1011.......
----.......
1010......
1011......
----......
1110...
1011...
----...
1010..
1011..
----
100 <---校驗(yàn)碼
發(fā)送端將m位消息連同r位校驗(yàn)碼(也就是M' + R)一起發(fā)送出去,接收端按同樣的方法算出收
到的m位消息的校驗(yàn)碼,再與收到的校驗(yàn)碼比較。接收端也可以用收到的全部m + r位除以生
成多項(xiàng)式,再判斷余數(shù)是否為0。這是因?yàn)?,M' + R = (QG + R) + R = QG,這里Q是商。顯
然,它也可以像發(fā)送端一樣,在全部m + r后再增加r個(gè)0,再除以生成多項(xiàng)式,如果沒(méi)有差錯(cuò)
發(fā)生,余數(shù)仍然為0。
3.生成多項(xiàng)式的選擇
------------------
很明顯,不同的生成多項(xiàng)式,其檢錯(cuò)能力是不同的。如何選擇一個(gè)好的生成多項(xiàng)式需要一定
的數(shù)學(xué)理論,這里只從一些側(cè)面作些分析。顯然,要使用r位校驗(yàn)碼,生成多項(xiàng)式的次數(shù)應(yīng)為
r。生成多項(xiàng)式應(yīng)該包含項(xiàng)"1",否則校驗(yàn)碼的LSB(Least Significant Bit)將始終為0。如果
消息(包括校驗(yàn)碼)T在傳輸過(guò)程中產(chǎn)生了差錯(cuò),則接收端收到的消息可以表示為T + E。若E不
能被生成多項(xiàng)式G除盡,則該差錯(cuò)可以被檢測(cè)出??紤]以下幾種情況:
1)1位差錯(cuò),即E = x^n = 100...00,n >= 0。只要G至少有2位1,E就不能被G除盡。這
是因?yàn)镚x^k相當(dāng)于將G左移k位,對(duì)任意多項(xiàng)式Q,QG相當(dāng)于將多個(gè)不同的G的左移相加。
如果G至少有兩位1,它的多個(gè)不同的左移相加結(jié)果至少有兩位1。
2)奇數(shù)位差錯(cuò),只要G含有因子F = x + 1,E就不能被G除盡。這是因?yàn)镼G = Q'F,由1)
的分析,F(xiàn)的多個(gè)不同的左移相加結(jié)果1的位數(shù)必然是偶數(shù)。
3)爆炸性差錯(cuò),即E = (x^n + ... + 1)x^m = 1...100...00,n >= 1,m >= 0,顯然只
要G包含項(xiàng)"1",且次數(shù)大于n,就不能除盡E。
4)2位差錯(cuò),即E = (x^n + 1)x^m = 100...00100...00,n >= 0。設(shè)x^n + 1 = QG + R,
則E = QGx^m + Rx^m,由3)可知E能被G除盡當(dāng)且僅當(dāng)R為0。因此只需分析x^n + 1,根
據(jù)[3],對(duì)于次數(shù)r,總存在一個(gè)生成多項(xiàng)式G,使得n最小為2^r - 1時(shí),才能除盡x^n
+ 1。稱該生成多項(xiàng)式是原始的(primitive),它提供了在該次數(shù)上檢測(cè)2位差錯(cuò)的最高
能力,因?yàn)楫?dāng)n = 2^r - 1時(shí),x^n + 1能被任何r次多項(xiàng)式除盡。[3]同時(shí)指出,原始
生成多項(xiàng)式是不可約分的,但不可約分的的多項(xiàng)式并不一定是原始的,因此對(duì)于某些
奇數(shù)位差錯(cuò),原始生成多項(xiàng)式是檢測(cè)不出來(lái)的。
以下是一些標(biāo)準(zhǔn)的CRC算法的生成多項(xiàng)式:
標(biāo)準(zhǔn) 多項(xiàng)式 16進(jìn)制表示
---------------------------------------------------------------------------
CRC12 x^12 + x^11 + x^3 + x^2 + x + 1 80F
CRC16 x^16 + x^15 + x^2 + 1 8005
CRC16-CCITT x^16 + x^12 + x^5 + 1 1021
CRC32 x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 04C11DB7
+ x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
16進(jìn)制表示去掉了最高次項(xiàng),CCITT在1993年改名為ITU-T。CRC12用于6位字節(jié),其它用于8位
字節(jié)。CRC16在IBM的BISYNCH通信標(biāo)準(zhǔn)。CRC16-CCITT被廣泛用于XMODEM, X.25和SDLC等通信
協(xié)議。而以太網(wǎng)和FDDI則使用CRC32,它也被用在ZIP,RAR等文件壓縮中。在這些生成多項(xiàng)式
中,CRC32是原始的,而其它3個(gè)都含有因子x + 1。
4.CRC算法的實(shí)現(xiàn)
---------------
要用程序?qū)崿F(xiàn)CRC算法,考慮對(duì)第2節(jié)的長(zhǎng)除法做一下變換,依然是M = 11100110,G = 1011,
其系數(shù)r為3。
11001100 11100110000
------------- 1011
1011 )11100110000 -----------
1011....... 1010110000
----....... 1010110000
1010...... 1011
1011...... ===> -----------
----...... 001110000
1110... 1110000
1011... 1011
----... -----------
1010.. 101000
1011.. 101000
---- 1011
100 <---校驗(yàn)碼 -----------
00100
100 <---校驗(yàn)碼
程序可以如下實(shí)現(xiàn):
1)將Mx^r的前r位放入一個(gè)長(zhǎng)度為r的寄存器;
2)如果寄存器的首位為1,將寄存器左移1位(將Mx^r剩下部分的MSB移入寄存器的LSB),
再與G的后r位異或,否則僅將寄存器左移1位(將Mx^r剩下部分的MSB移入寄存器的LSB);
3)重復(fù)第2步,直到M全部Mx^r移入寄存器;
4)寄存器中的值則為校驗(yàn)碼。
用CRC16-CCITT的生成多項(xiàng)式0x1021,其C代碼(本文所有代碼假定系統(tǒng)為32位,且都在VC6上
編譯通過(guò))如下:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg;
crc_reg = (message[0] << 8) + message[1];
for (i = 0; i < len; i++)
{
if (i < len - 2)
for (j = 0; j <= 7; j++)
{
if ((short)crc_reg < 0)
crc_reg = ((crc_reg << 1) + (message[i + 2] >> (7 - i))) ^ 0x1021;
else
crc_reg = (crc_reg << 1) + (message[i + 2] >> (7 - i));
}
else
for (j = 0; j <= 7; j++)
{
if ((short)crc_reg < 0)
crc_reg = (crc_reg << 1) ^ 0x1021;
else
crc_reg <<= 1;
}
}
return crc_reg;
}
顯然,每次內(nèi)循環(huán)的行為取決于寄存器首位。由于異或運(yùn)算滿足交換率和結(jié)合律,以及與0異
或無(wú)影響,消息可以不移入寄存器,而在每次內(nèi)循環(huán)的時(shí)候,寄存器首位再與對(duì)應(yīng)的消息位
異或。改進(jìn)的代碼如下:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned short current;
for (i = 0; i < len; i++)
{
current = message[i] << 8;
for (j = 0; j < 8; j++)
{
if ((short)(crc_reg ^ current) < 0)
crc_reg = (crc_reg << 1) ^ 0x1021;
else
crc_reg <<= 1;
current <<= 1;
}
}
return crc_reg;
}
以上的討論中,消息的每個(gè)字節(jié)都是先傳輸MSB,CRC16-CCITT標(biāo)準(zhǔn)卻是按照先傳輸LSB,消息
右移進(jìn)寄存器來(lái)計(jì)算的。只需將代碼改成判斷寄存器的LSB,將0x1021按位顛倒后(0x8408)與
寄存器異或即可,如下所示:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned short current;
for (i = 0; i < len; i++)
{
current = message[i];
for (j = 0; j < 8; j++)
{
if ((crc_reg ^ current) & 0x0001)
crc_reg = (crc_reg >> 1) ^ 0x8408;
else
crc_reg >>= 1;
current >>= 1;
}
}
return crc_reg;
}
該算法使用了兩層循環(huán),對(duì)消息逐位進(jìn)行處理,這樣效率是很低的。為了提高時(shí)間效率,通
常的思想是以空間換時(shí)間??紤]到內(nèi)循環(huán)只與當(dāng)前的消息字節(jié)和crc_reg的低字節(jié)有關(guān),對(duì)該
算法做以下等效轉(zhuǎn)換:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
int i, j;
unsigned short crc_reg = 0;
unsigned char index;
unsigned short to_xor;
for (i = 0; i < len; i++)
{
index = (crc_reg ^ message[i]) & 0xff;
to_xor = index;
for (j = 0; j < 8; j++)
{
if (to_xor & 0x0001)
to_xor = (to_xor >> 1) ^ 0x8408;
else
to_xor >>= 1;
}
crc_reg = (crc_reg >> 8) ^ to_xor;
}
return crc_reg;
}
現(xiàn)在內(nèi)循環(huán)只與index相關(guān)了,可以事先以數(shù)組形式生成一個(gè)表crc16_ccitt_table,使得
to_xor = crc16_ccitt_table[index],于是可以簡(jiǎn)化為:
unsigned short do_crc(unsigned char *message, unsigned int len)
{
unsigned short crc_reg = 0;
while (len--)
crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
return crc_reg;
}
crc16_ccitt_table通過(guò)以下代碼生成:
int main()
{
unsigned char index = 0;
unsigned short to_xor;
int i;
printf("unsigned short crc16_ccitt_table[256] =\n{");
while (1)
{
if (!(index % 8))
printf("\n");
to_xor = index;
for (i = 0; i < 8; i++)
{
if (to_xor & 0x0001)
to_xor = (to_xor >> 1) ^ 0x8408;
else
to_xor >>= 1;
}
printf("0x%04x", to_xor);
if (index == 255)
{
printf("\n");
break;
}
else
{
printf(", ");
index++;
}
}
printf("};");
return 0;
}
生成的表如下:
unsigned short crc16_ccitt_table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
這樣對(duì)于消息unsigned char message[len],校驗(yàn)碼為:
unsigned short code = do_crc(message, len);
并且按以下方式發(fā)送出去:
message[len] = code & 0x00ff;
message[len + 1] = (code >> 8) & 0x00ff;
接收端對(duì)收到的len + 2字節(jié)執(zhí)行do_crc,如果沒(méi)有差錯(cuò)發(fā)生則結(jié)果應(yīng)為0。
在一些傳輸協(xié)議中,發(fā)送端并不指出消息長(zhǎng)度,而是采用結(jié)束標(biāo)志,考慮以下幾種差錯(cuò):
1)在消息之前,增加1個(gè)或多個(gè)0字節(jié);
2)消息以1個(gè)或多個(gè)連續(xù)的0字節(jié)開始,丟掉1個(gè)或多個(gè)0;
3)在消息(包括校驗(yàn)碼)之后,增加1個(gè)或多個(gè)0字節(jié);
4)消息(包括校驗(yàn)碼)以1個(gè)或多個(gè)連續(xù)的0字節(jié)結(jié)尾,丟掉1個(gè)或多個(gè)0;
顯然,這幾種差錯(cuò)都檢測(cè)不出來(lái),其原因就是如果寄存器值為0,處理0消息字節(jié)(或位),寄
存器值不變。為了解決前2個(gè)問(wèn)題,只需寄存器的初值非0即可,對(duì)do_crc作以下改進(jìn):
unsigned short do_crc(unsigned short reg_init, unsigned char *message, unsigned int len)
{
unsigned short crc_reg = reg_init;
while (len--)
crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
return crc_reg;
}
在CRC16-CCITT標(biāo)準(zhǔn)中reg_init = 0xffff,為了解決后2個(gè)問(wèn)題,在CRC16-CCITT標(biāo)準(zhǔn)中將計(jì)
算出的校驗(yàn)碼與0xffff進(jìn)行異或,即:
unsigned short code = do_crc(0xffff, message, len);
code ^= 0xffff;
message[len] = code & 0x00ff;
message[len + 1] = (code >> 8) & 0x00ff;
顯然,現(xiàn)在接收端對(duì)收到的所有字節(jié)執(zhí)行do_crc,如果沒(méi)有差錯(cuò)發(fā)生則結(jié)果應(yīng)為某一常值
GOOD_CRC。其滿足以下關(guān)系:
unsigned char p[]= {0xff, 0xff};
GOOD_CRC = do_crc(0, p, 2);
其結(jié)果為GOOD_CRC = 0xf0b8。
聯(lián)系客服