中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進行(9→1)回歸預(yù)測(三維圖散點圖可視化)

ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進行(9→1)回歸預(yù)測(三維圖散點圖可視化)


相關(guān)文章
ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進行(9→1)回歸預(yù)測(三維圖散點圖可視化)
ML之LiR&Lasso:基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進行(9→1)回歸預(yù)測(三維圖散點圖可視化)實現(xiàn)

基于datasets糖尿病數(shù)據(jù)集利用LiR和Lasso算法進行(9→1)回歸預(yù)測(三維圖散點圖可視化)

設(shè)計思路

輸出結(jié)果

Lasso核心代碼

class Lasso Found at: sklearn.linear_model._coordinate_descent

class Lasso(ElasticNet):
    """Linear Model trained with L1 prior as regularizer (aka the Lasso)
    
    The optimization objective for Lasso is::
    
    (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
    
    Technically the Lasso model is optimizing the same objective function as
    the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).
    
    Read more in the :ref:`User Guide <lasso>`.
    
    Parameters
    ----------
    alpha : float, default=1.0
    Constant that multiplies the L1 term. Defaults to 1.0.
    ``alpha = 0`` is equivalent to an ordinary least square, solved
    by the :class:`LinearRegression` object. For numerical
    reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised.
    Given this, you should use the :class:`LinearRegression` object.
    
    fit_intercept : bool, default=True
    Whether to calculate the intercept for this model. If set
    to False, no intercept will be used in calculations
    (i.e. data is expected to be centered).
    
    normalize : bool, default=False
    This parameter is ignored when ``fit_intercept`` is set to False.
    If True, the regressors X will be normalized before regression by
    subtracting the mean and dividing by the l2-norm.
    If you wish to standardize, please use
    :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
    on an estimator with ``normalize=False``.
    
    precompute : 'auto', bool or array-like of shape (n_features, n_features),    default=False
    Whether to use a precomputed Gram matrix to speed up
    calculations. If set to ``'auto'`` let us decide. The Gram
    matrix can also be passed as argument. For sparse input
    this option is always ``True`` to preserve sparsity.
    
    copy_X : bool, default=True
    If ``True``, X will be copied; else, it may be overwritten.
    
    max_iter : int, default=1000
    The maximum number of iterations
    
    tol : float, default=1e-4
    The tolerance for the optimization: if the updates are
    smaller than ``tol``, the optimization code checks the
    dual gap for optimality and continues until it is smaller
    than ``tol``.
    
    warm_start : bool, default=False
    When set to True, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.
    See :term:`the Glossary <warm_start>`.
    
    positive : bool, default=False
    When set to ``True``, forces the coefficients to be positive.
    
    random_state : int, RandomState instance, default=None
    The seed of the pseudo random number generator that selects a 
     random
    feature to update. Used when ``selection`` == 'random'.
    Pass an int for reproducible output across multiple function calls.
    See :term:`Glossary <random_state>`.
    
    selection : {'cyclic', 'random'}, default='cyclic'
    If set to 'random', a random coefficient is updated every iteration
    rather than looping over features sequentially by default. This
    (setting to 'random') often leads to significantly faster convergence
    especially when tol is higher than 1e-4.
    
    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
    parameter vector (w in the cost function formula)
    
    sparse_coef_ : sparse matrix of shape (n_features, 1) or     (n_targets, n_features)
    ``sparse_coef_`` is a readonly property derived from ``coef_``
    
    intercept_ : float or ndarray of shape (n_targets,)
    independent term in decision function.
    
    n_iter_ : int or list of int
    number of iterations run by the coordinate descent solver to reach
    the specified tolerance.
    
    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.Lasso(alpha=0.1)
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    Lasso(alpha=0.1)
    >>> print(clf.coef_)
    [0.85 0.  ]
    >>> print(clf.intercept_)
    0.15...
    
    See also
    --------
    lars_path
    lasso_path
    LassoLars
    LassoCV
    LassoLarsCV
    sklearn.decomposition.sparse_encode
    
    Notes
    -----
    The algorithm used to fit the model is coordinate descent.
    
    To avoid unnecessary memory duplication the X argument of the fit 
     method
    should be directly passed as a Fortran-contiguous numpy array.
    """
    path = staticmethod(enet_path)
    @_deprecate_positional_args
    def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False, 
        precompute=False, copy_X=True, max_iter=1000, 
        tol=1e-4, warm_start=False, positive=False, 
        random_state=None, selection='cyclic'):
        super().__init__(alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, 
         normalize=normalize, precompute=precompute, copy_X=copy_X, 
         max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, 
         random_state=random_state, selection=selection)


######################################################
 #########################
# Functions for CV with paths functions
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
【機器學(xué)習(xí)】回歸分析、過擬合、分類
機器學(xué)習(xí)基礎(chǔ):用 Lasso 做特征選擇
馬爾科夫鏈蒙特卡洛方法(MCMC)在密碼學(xué)和優(yōu)化中的應(yīng)用
三維散點圖
DeepLearning tutorial(3)MLP多層感知機原理簡介+代碼詳解
機器學(xué)習(xí)可視化利器--Yellowbrick
更多類似文章 >>
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服