Suppose you’d like to take a close look at a fly brain—an extremely close look.
假設(shè)你想近距離觀察一只蒼蠅的大腦——非常近距離的觀察。
With a new technique called expansion microscopy, scientists have been doing just that: labeling neurons of interest and tracing their thinnest tendrils to chart their connections.
通過一種叫做擴(kuò)張顯微鏡的新技術(shù),科學(xué)家們正在做的就是:標(biāo)記感興趣的神經(jīng)元,并追蹤它們最細(xì)的卷須來繪制它們之間的聯(lián)系
But the process, which infuses a piece of brain tissue with a gel that swells up to enlarge the details, dramatically increases the time it takes to image that tissue.
但是,在這一過程中將一種凝膠注入一片腦組織,使其膨脹以放大細(xì)節(jié),這會(huì)大大增加對(duì)該組織成像的時(shí)間。
And as a microscope beam images parts of this thick sample from top to bottom, it can “burn out” the fluorescent tags attached to proteins that help identify the neurons, making deeper parts of the sample completely dark.
當(dāng)顯微鏡從上到下對(duì)這種厚樣本的部分進(jìn)行成像時(shí),它可以“燒毀”附著在蛋白質(zhì)上的熒光標(biāo)記,這些標(biāo)記有助于識(shí)別神經(jīng)元,使樣本的更深部分完全變暗。
In a new study, researchers present a solution: combining that expansion process with an instrument called a lattice light-sheet microscope, which sweeps an ultrathin sheet of light through the sample.
在一項(xiàng)新的研究中,研究人員提出了一種解決方案:將這種膨脹過程與一種稱為點(diǎn)陣薄片顯微鏡的儀器結(jié)合起來。
Because this microscope can linger longer on any area with less intense light than other microscopes, the fluorescence is less likely to burn out and obscure parts of the image—which means that sharp, intricate details, such as the spines on mouse neurons (shown in green, above) can emerge.
由于這種顯微鏡可以在光線較弱的任何區(qū)域停留更長時(shí)間,因此熒光不太可能耗盡,圖像的某些模糊部分也不太可能消失——這意味著可以出現(xiàn)尖銳、復(fù)雜的細(xì)節(jié),比如老鼠神經(jīng)元上的刺(如圖綠色所示)。
And by capturing a whole plane at once instead of a set of points, this microscope worked through an entire fly brain (below) in 62.5 hours, roughly seven times faster than the fastest microscope used in such high-resolution imaging to date, the team reports today in Science.
這個(gè)研究小組今天在《科學(xué)》雜志上報(bào)道說,通過一次捕獲整個(gè)平面而不是一組點(diǎn),這個(gè)顯微鏡在62.5小時(shí)內(nèi)完成了對(duì)整個(gè)蒼蠅大腦的掃描(下圖),大約是迄今為止在這種高分辨率成像中使用的最快顯微鏡的7倍。
Thanks to sophisticated computational tools that stitch thousands of 3D sections together, the researchers showed they could capture large areas of brain and then zoom in at high resolution.
多虧了復(fù)雜的計(jì)算工具,將成千上萬的3D切片拼接在一起,研究人員展示了他們可以捕捉大腦的大片區(qū)域,然后以高分辨率放大。
The approach should make it easier to study how circuits of interacting neurons across the brain drive certain behaviors, and how that circuitry varies across lots of individuals, between sexes, or over the course of development.
這種方法應(yīng)該能更容易地研究大腦中相互作用的神經(jīng)元回路如何驅(qū)動(dòng)某些行為,以及該回路如何在許多個(gè)體、不同性別或整個(gè)發(fā)育過程中發(fā)生變化。
問題:
在今天文章所介紹的實(shí)驗(yàn)技術(shù)中,有提到過使用了哪兩種動(dòng)物來進(jìn)行研究呢?
留言回復(fù)正確答案即可獲得amber給你準(zhǔn)備的紅包哦!朋友們快來試試吧!
感謝關(guān)注
跟amber一起看世界
聯(lián)系客服