努力做最好的中小學數(shù)學教育公眾號
努力做一個最丑的公眾號
來都來了,敬請關(guān)注“賊叉”,或者直接搜doubimather,逗逼數(shù)學人。
更加歡迎置頂。
前兩天因為和師弟吹了一場牛逼,結(jié)果把出的題都快忘了。現(xiàn)在附上解答。
我是很反感事后諸葛亮的解法的,因為有很多的題目的解法確實是比較難以想到的,明明就是靠的靈光一閃做出來的,非要編出思路的行為是可恥的,而且那樣的題目一般是不會出現(xiàn)在中高考中的。中高考的題目一定是有跡可循的那種。
所以我講的每個題目一定都是有比較自然的思路的那種。你把這些都掌握了,數(shù)學學不好就有鬼了。。。
上次這個題目是這樣的:給出的三條線段不在一個封閉圖形里,所以第一反應(yīng)就是能不能把這三條線段給放到一個封閉的圖形里去。
如果三條線段要構(gòu)成一個三角形,看這三條邊不年不節(jié)的數(shù)喲,感覺啥也不是,畢竟勾股定理都不滿足其他的就懶得看了。
所以我們這時候放棄了把這三條線段弄到一個三角形里的想法,換句話說,我們不打算平移。
那么就只能是旋轉(zhuǎn)了。
正方形也好,正三角形也好,旋轉(zhuǎn)是一種常見的辦法,通過旋轉(zhuǎn)就是把那些位于世界各地的線段歸攏起來,構(gòu)成一些特殊性質(zhì)的圖形,然后解決問題。
細節(jié)如下:
好,接下來看今天的作業(yè):
關(guān)注賊老師
好好學習
天天向上
聯(lián)系客服