滴水穿石,不是因?yàn)榱α?,而是在于?jiān)持!
大浪淘沙——2019江蘇
【閑言碎語(yǔ)】計(jì)數(shù)原理是高考考查的重點(diǎn)內(nèi)容,考查的形式有兩種,一是獨(dú)立考查,二是與古典概型結(jié)合考查,由于古典概型概率的計(jì)算比較明確,所以,計(jì)算正確基本事件總數(shù)是解題的重要一環(huán).在處理問(wèn)題的過(guò)程中,應(yīng)注意審清題意,明確“分類(lèi)”“分步”,根據(jù)順序有無(wú),明確“排列”“組合”.
【閑言碎語(yǔ)】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問(wèn)題:一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號(hào),防止與乘法公式混淆.二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn).此外,本題中的切點(diǎn)坐標(biāo)可以觀察出來(lái),但是仍須謹(jǐn)慎推導(dǎo),防止漏解!
【閑言碎語(yǔ)】本題考查在三角形中平面向量的數(shù)量積運(yùn)算,滲透了直觀想象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取幾何法,利用數(shù)形結(jié)合和方程思想解題.基本思路是利用基底進(jìn)行轉(zhuǎn)化,很有啟發(fā)性的一道試題,有興趣的同學(xué)可以嘗試一下坐標(biāo)運(yùn)算,對(duì)比不同解法,從中進(jìn)行歸納!
【閑言碎語(yǔ)】本題主要考查三角函數(shù)的應(yīng)用、解方程、直線與圓等基礎(chǔ)知識(shí),考查直觀想象和數(shù)學(xué)建模及運(yùn)用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力.很有特色的一道題,不是想做就能做的,幾何法代數(shù)法雙管齊下,就看你能是否堅(jiān)持到底,具有良好的數(shù)學(xué)素養(yǎng).可用于培優(yōu)教學(xué)資料.類(lèi)似與初中的二次函數(shù)討論題目,值得研究!
【閑言碎語(yǔ)】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查綜合運(yùn)用數(shù)學(xué)思想方法分析與解決問(wèn)題以及邏輯推理能力.第(1),(2)問(wèn)是同步學(xué)習(xí)好練習(xí),第(3)問(wèn)則是一個(gè)不錯(cuò)的角度,值得學(xué)習(xí)和借鑒!
【閑言碎語(yǔ)】本題主要考查等差和等比數(shù)列的定義、通項(xiàng)公式、性質(zhì)等基礎(chǔ)知識(shí),考查代數(shù)推理、轉(zhuǎn)化與化歸及綜合運(yùn)用數(shù)學(xué)知識(shí)探究與解決問(wèn)題的能力.最后一問(wèn)利用導(dǎo)數(shù)研究數(shù)列,是一個(gè)亮點(diǎn),定性分析是本題的難點(diǎn),突破方顯本色!此外,注意本題的命題梯度,讓學(xué)生能夠步步前行,分解難度,體現(xiàn)了命題人的匠心!
【閑言碎語(yǔ)】本題主要考查二項(xiàng)式定理、組合數(shù)等基礎(chǔ)知識(shí),考查分析問(wèn)題能力與運(yùn)算求解能力.二項(xiàng)式定理作為解答題出現(xiàn),是新課改的方向嗎?對(duì)比系數(shù)抓特征,是本題求解的關(guān)鍵點(diǎn),可以此題改為選填題用于日常練習(xí).
【閑言碎語(yǔ)】本題主要考查計(jì)數(shù)原理、古典概型、隨機(jī)變量及其概率分布等基礎(chǔ)知識(shí),考查邏輯思維能力和推理論證能力.其中第(1)問(wèn)可改為選填題進(jìn)行練習(xí),第(2)問(wèn)需要認(rèn)真分析,理解題意,整合參考答案,不適合日常練習(xí),可作為培優(yōu)提升試題!
附:2019江蘇高考數(shù)學(xué)試卷下載地址為:
聯(lián)系客服