牛頓,可以說(shuō)是最為普羅大眾所熟知的一位科學(xué)家了。因?yàn)槿巳硕贾廊f(wàn)有引力,而知道了萬(wàn)有引力,自然也就知道了牛頓。牛頓所創(chuàng)建的牛頓力學(xué)體系可以說(shuō)是近代物理學(xué)的基石。然而,牛頓力學(xué)體系并不完美,甚至可以說(shuō)并不是一種普遍的規(guī)律,其所描述的其實(shí)是一種普遍規(guī)律之中的一小部分特例,所以,之后便有了愛(ài)因斯坦的狹義相對(duì)論和廣義相對(duì)論,終于算是將力和運(yùn)動(dòng)的事情給說(shuō)明白了。那么,什么是牛頓力學(xué)、狹義相對(duì)論以及廣義相對(duì)論呢?這些是復(fù)雜而高大上的話題,不是一句兩句,一天兩天能夠說(shuō)清楚的。
不過(guò),我們普羅大眾沒(méi)有必要了解得那么深?yuàn)W,我們只需要通俗的弄明白這些都是怎么回事就可以了。那咱們就來(lái)通俗的講一下。首先,牛頓力學(xué)。牛頓力學(xué)告訴我們速度是疊加的。然后我們發(fā)現(xiàn)果然是這樣。舉例,一個(gè)人站在地上,從他的面前飛馳而過(guò)一輛火車,速度為每秒20米?;疖嚿嫌幸蝗吮寂?,速度為每秒1米。此時(shí)在火車外站著的人看來(lái),火車上奔跑者的移動(dòng)速度為每秒21米。相對(duì)于觀察者而言,火車和奔跑者的速度是疊加的。這沒(méi)有問(wèn)題??墒钱?dāng)速度逐漸加快的時(shí)候,問(wèn)題就來(lái)了,比如光速。
光速是恒定不變的,對(duì)任何參考系而言都不變。如果在火車上發(fā)射一道光束,那么無(wú)論對(duì)于火車上的人而言,還是對(duì)于火車下的人而言,光速都是每秒30萬(wàn)公里,并不會(huì)疊加火車的速度。只不過(guò)火車上的人和火車下的人的時(shí)間發(fā)生了變化,火車下面人的時(shí)間變慢了。也就是說(shuō)牛頓力學(xué)只能夠適用于低速運(yùn)動(dòng),只是運(yùn)動(dòng)處于低速時(shí)的一種特例,無(wú)法適用于所有的運(yùn)動(dòng)。于是,愛(ài)因斯坦發(fā)明了狹義相對(duì)論。沒(méi)有人知道光速為什么不變,所以愛(ài)因斯坦就在光速不變的前提下開(kāi)始進(jìn)行推導(dǎo),結(jié)果發(fā)現(xiàn),既然光速不變,那么在運(yùn)動(dòng)的過(guò)程中,物體的時(shí)間、質(zhì)量等都會(huì)發(fā)生變化。
于是就有了e=mc^2。于是我們也知道了,隨著物體運(yùn)動(dòng)速度的加快,質(zhì)量會(huì)越來(lái)越大,當(dāng)有質(zhì)量的物體接近光速的時(shí)候,質(zhì)量將趨向于無(wú)窮大,所以任何有質(zhì)量的物體都無(wú)法達(dá)到光速,所以光速為宇宙間物體運(yùn)動(dòng)的最快速度。那么何為廣義相對(duì)論呢?愛(ài)因斯坦發(fā)明的狹義相對(duì)論有一個(gè)問(wèn)題,那就是應(yīng)用范圍過(guò)于狹窄了,狹義相對(duì)論只能應(yīng)用于慣性系之中,也就是只能夠解釋在沒(méi)有引力情況下的運(yùn)動(dòng)。因?yàn)橐坏┯幸Γ蜁?huì)出現(xiàn)一個(gè)加速度的問(wèn)題,而狹義相對(duì)論無(wú)法處理這個(gè)問(wèn)題。可問(wèn)題是引力是客觀存在的,必須設(shè)法解決。
于是愛(ài)因斯坦在其中加入了一個(gè)自由下落的參考系。比如我們坐在一個(gè)集裝箱中,從萬(wàn)米高空急速下落,此時(shí)我們就會(huì)在集裝箱內(nèi)懸浮起來(lái),而我們懸浮的這個(gè)狀態(tài)表面上看起來(lái)就和處于無(wú)引力場(chǎng)的空間中一樣。所以愛(ài)因斯坦認(rèn)為自由下落的參考系和無(wú)引力場(chǎng)的慣性系的物理特性是一樣的。于是,我們可以給任何事物增加一個(gè)自由下落的參考系,增加完參考系,這個(gè)事物就變?yōu)榱艘粋€(gè)無(wú)引力場(chǎng)的慣性系,然后就可以運(yùn)用狹義相對(duì)論進(jìn)行解釋了。而加入的自由下落參考系則是時(shí)空,所以在廣義相對(duì)論中引力被描述為了時(shí)空的彎曲。
聯(lián)系客服