三角形作為平面幾何中的基本圖形,可以說(shuō)學(xué)好三角形才能學(xué)好幾何。如三角形的性質(zhì)是學(xué)習(xí)、研究多邊形的基礎(chǔ);
兩個(gè)三角形全等探究的是兩個(gè)圖形的形狀和大小,為進(jìn)一步學(xué)習(xí)三角形相似做好準(zhǔn)備;
特殊三角形(等腰三角形、等邊三角形)的性質(zhì)與判定是繼續(xù)學(xué)習(xí)特殊四邊形、三角函數(shù)等的重要工具;
大多數(shù)有關(guān)幾何圖形的題目最終都可以轉(zhuǎn)化歸結(jié)為三角形問(wèn)題,可運(yùn)用三角形的相關(guān)知識(shí)解答。
認(rèn)真研究近幾年全國(guó)各地的中考數(shù)學(xué)試題,我們發(fā)現(xiàn)跟三角形相關(guān)的中考試題占有一定的比重。中考在考查三角形時(shí)不僅會(huì)關(guān)注基礎(chǔ)知識(shí)與基本技能,更會(huì)在一些綜合題中突出對(duì)動(dòng)手操作能力和創(chuàng)新意識(shí)的考查。因此,大家在復(fù)習(xí)三角形這一塊知識(shí)內(nèi)容的時(shí)候,一定要加強(qiáng)知識(shí)方法的積累。
在《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出初中生幾何掌握程度提出一些要求,如讓學(xué)生探索基本圖形(直線、圓)的基本性質(zhì)及其相互關(guān)系,進(jìn)一步豐富對(duì)空間圖形的認(rèn)識(shí)和感受,學(xué)習(xí)平移、旋轉(zhuǎn)、對(duì)稱的基本性質(zhì),欣賞并體驗(yàn)變換在現(xiàn)實(shí)生活中的廣泛應(yīng)用,學(xué)習(xí)運(yùn)用坐標(biāo)系確定物體位置的方法,發(fā)展空間觀念等等。
因此,一些三角形中考試題就會(huì)從學(xué)生實(shí)際經(jīng)驗(yàn)與掌握的圖形性質(zhì)出發(fā),證明一些有關(guān)三角形的基本性質(zhì),從而體會(huì)證明的必要性,理解證明的基本過(guò)程,掌握用綜合法證明的格式,初步感受公理化思想。
典型例題1:
聯(lián)系客服