中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
GEO數(shù)據(jù)挖掘小嘗試:(三)利用clusterProfiler進(jìn)行富集分析輸入標(biāo)題

clusterProfiler 是業(yè)界大神Y叔寫的一個(gè)R包,可以用來做各種富集分析,如GO、KEGG、DO(Disease Ontology analysis)、Reactome pathway analysis以及GSEA富集分析等。而除了富集分析,他還可以非常方便的對富集分析結(jié)果進(jìn)行可視化。

這里使用clusterProfiler進(jìn)行GO、KEGG以及GSEA富集分析。

1、安裝clusterProfiler

安裝clusterProfiler:

> source("http://bioconductor.org/biocLite.R")> biocLite('clusterProfiler')

2、ID轉(zhuǎn)換

對于沒有轉(zhuǎn)換的gene ID,clusterProfiler也提供了bitr方法進(jìn)行轉(zhuǎn)換ID:

Usage:  bitr(geneID, fromType, toType, OrgDb, drop = TRUE)Arguments  geneID       input gene id  fromType     input id type  toType       output id type  OrgDb        annotation db  drop         drop NA or not# example:> x <- c("GPX3",  "GLRX",   "LBP",   "CRYAB", "DEFB1", "HCLS1",   "SOD2",   "HSPA2",        "ORM1",  "IGFBP1", "PTHLH", "GPC3",  "IGFBP3","TOB1",    "MITF",   "NDRG1",        "NR1H4", "FGFR3",  "PVR",   "IL6",   "PTPRM", "ERBB2",   "NID2",   "LAMB1",        "COMP",  "PLS3",   "MCAM",  "SPP1",  "LAMC1", "COL4A2",  "COL4A1", "MYOC",         "ANXA4", "TFPI2",  "CST6",  "SLPI",  "TIMP2", "CPM",     "GGT1",   "NNMT",       "MAL",   "EEF1A2", "HGD",   "TCN2",  "CDA",   "PCCA",    "CRYM",   "PDXK",         "STC1",  "WARS",  "HMOX1", "FXYD2", "RBP4",   "SLC6A12", "KDELR3", "ITM2B")> eg <- bitr(x, fromType="SYMBOL", toType=c("ENTREZID","ENSEMBL"), OrgDb="org.Hs.eg.db"); head(eg)'select()' returned 1:many mapping between keys and columns  SYMBOL ENTREZID         ENSEMBL1   GPX3     2878 ENSG000002114452   GLRX     2745 ENSG000001732213    LBP     3929 ENSG000001299884  CRYAB     1410 ENSG000001098465  DEFB1     1672 ENSG000001648256  HCLS1     3059 ENSG00000180353

可以看到,這里轉(zhuǎn)換ID的對應(yīng)文件來源于"org.Hs.eg.db"這個(gè)包。

3、GO、KEGG富集分析

3.1 GO富集分析

在開始富集分析之前先看看GO和KEGG富集分析的方法以及參數(shù):

enrichGO     GO Enrichment Analysis of a gene set. Given a vector of genes, this             function will return the enrichment GO categories after FDR control.Usage:  enrichGO(gene, OrgDb, keyType = "ENTREZID", ont = "MF", pvalueCutoff = 0.05,            pAdjustMethod = "BH", universe, qvalueCutoff = 0.2, minGSSize = 10,            maxGSSize = 500, readable = FALSE, pool = FALSE)Arguments:  gene                 a vector of entrez gene id.  OrgDb                OrgDb  keyType              keytype of input gene  ont                  One of "MF", "BP", and "CC" subontologies or 'ALL'.  pvalueCutoff         Cutoff value of pvalue.  pAdjustMethod        one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"  universe             background genes  qvalueCutoff         qvalue cutoff  minGSSize            minimal size of genes annotated by Ontology term for testing.  maxGSSize            maximal size of genes annotated for testing  readable             whether mapping gene ID to gene Name  pool                 If ont=’ALL’, whether pool 3 GO sub-ontologies

導(dǎo)入數(shù)據(jù),這是一個(gè)整合數(shù)據(jù),在這里我們要用到的只是entrez ID列和最后一列(logFC):

> library(clusterProfiler)> degenes <- read.csv('D:/TCGA/microarray_analysis/intersectgenes_logFC_broad.txt',header = T,stringsAsFactors = F,sep = '\t')> head(degenes)    Symbol GSM450153 GSM450154 GSM450155              ID      P.Value     Q.Value   adj.P.Val RefSeq.ID Entrez.ID Fold.Change1     AIM1   -0.7155   -0.8391   -2.3808 ENSG00000112297 4.518321e-02 0.287315306 0.287315306        NA       202    2.5553542      AK5   -1.9269   -0.6967   -0.5628 ENSG00000154027 7.907520e-05 0.005415775 0.005415775        NA     26289    1.3500513    ANXA3    4.2110    0.8687   -0.1016 ENSG00000138772 3.122002e-02 0.229588586 0.229588586        NA       306   -2.3287364 ARHGAP15   -0.0725   -1.5821   -2.0469 ENSG00000075884 6.321948e-05 0.004553170 0.004553170        NA     55843    5.0641835    ASGR2    1.5563    1.4054    1.2066 ENSG00000161944 1.474010e-02 0.146976591 0.146976591        NA       433    2.0615356      ATM   -1.4344   -0.4961   -1.9324 ENSG00000149311 1.403235e-02 0.142613364 0.142613364        NA       472    2.313447> genelist <- degenes$Entrez.ID# 檢查是否有重復(fù)> genelist[duplicated(genelist)]integer(0)

由于clusterProfiler富集分析推薦的輸入文件是Entrez ID,因此這里提取的是Entrez ID,接下來就可以進(jìn)行富集分析了:

> go <- enrichGO(genelist, OrgDb = org.Hs.eg.db, ont='ALL',pAdjustMethod = 'BH',pvalueCutoff = 0.05,                  qvalueCutoff = 0.2,keyType = 'ENTREZID')> head(go)           ONTOLOGY         ID                                         Description GeneRatio   BgRatio       pvalueGO:1903039       BP GO:1903039 positive regulation of leukocyte cell-cell adhesion    20/121 226/17381 9.074966e-17GO:0050870       BP GO:0050870            positive regulation of T cell activation    19/121 215/17381 5.824805e-16GO:0001819       BP GO:0001819          positive regulation of cytokine production    24/121 409/17381 7.118707e-16GO:0007159       BP GO:0007159                        leukocyte cell-cell adhesion    23/121 374/17381 1.118047e-15GO:0022409       BP GO:0022409           positive regulation of cell-cell adhesion    20/121 259/17381 1.289708e-15GO:1903037       BP GO:1903037          regulation of leukocyte cell-cell adhesion    22/121 343/17381 2.095005e-15               p.adjust       qvalueGO:1903039 2.474743e-13 1.898101e-13GO:0050870 6.470905e-13 4.963113e-13GO:0001819 6.470905e-13 4.963113e-13GO:0007159 7.034066e-13 5.395051e-13GO:0022409 7.034066e-13 5.395051e-13GO:1903037 9.521797e-13 7.303114e-13                                                                                                                           geneIDGO:1903039                      84433/6352/1236/915/916/959/972/9308/3113/3117/3119/3122/3458/3565/22914/3932/8013/6504/7494/6375GO:0050870                           84433/6352/1236/915/916/959/972/9308/3113/3117/3119/3122/3458/3565/22914/3932/6504/7494/6375GO:0001819 330/84433/834/1236/914/916/959/972/9308/56253/2205/2597/3113/8692/64135/3458/3565/22914/27035/8013/6504/7100/7494/6375GO:0007159        84433/6352/1236/914/915/916/959/972/9308/2213/3113/3117/3119/3122/3458/3565/22914/3932/8013/6280/6504/7494/6375GO:0022409                      84433/6352/1236/915/916/959/972/9308/3113/3117/3119/3122/3458/3565/22914/3932/8013/6504/7494/6375GO:1903037             84433/6352/1236/914/915/916/959/972/9308/2213/3113/3117/3119/3122/3458/3565/22914/3932/8013/6504/7494/6375           CountGO:1903039    20GO:0050870    19GO:0001819    24GO:0007159    23GO:0022409    20GO:1903037    22> dim(go)[1] 524  10> dim(go[go$ONTOLOGY=='BP',])[1] 482  10> dim(go[go$ONTOLOGY=='CC',])[1] 26 10> dim(go[go$ONTOLOGY=='MF',])[1] 16 10# 看來這些差異基因主要還是富集到BP中了# 進(jìn)行簡單的可視化> barplot(go,showCategory=20,drop=T)> dotplot(go,showCategory=50)# 還可以繪制GO的網(wǎng)絡(luò)關(guān)系圖,但是值得注意的是這里的數(shù)據(jù)只能是富集一個(gè)GO通路(BP、CC或MF)的數(shù)據(jù)> go.BP <- enrichGO(genelist, OrgDb = org.Hs.eg.db, ont='BP',pAdjustMethod = 'BH',pvalueCutoff = 0.05, qvalueCutoff = 0.2,keyType = 'ENTREZID')> plotGOgraph(go.BP)

barplot

dotplot

plotGOgraph

3.2 KEGG通路富集

KEGG通路富集函數(shù)用法與GO富集分析方法類似:

enrichKEGG       KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return                  the enrichment KEGG categories with FDR control.Usage:  enrichKEGG(gene, organism = "hsa", keyType = "kegg", pvalueCutoff = 0.05,             pAdjustMethod = "BH", universe, minGSSize = 10, maxGSSize = 500,             qvalueCutoff = 0.2, use_internal_data = FALSE)Arguments:  gene                     a vector of entrez gene id.  organism                 supported organism listed in ’http://www.genome.jp/kegg/catalog/org_list.html’  keyType                  one of "kegg", ’ncbi-geneid’, ’ncib-proteinid’ and ’uniprot’  pvalueCutoff             Cutoff value of pvalue.  pAdjustMethod            one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"  universe                 background genes  minGSSize                minimal size of genes annotated by Ontology term for testing.  maxGSSize                maximal size of genes annotated for testing  qvalueCutoff             qvalue cutoff  use_internal_data        logical, use KEGG.db or latest online KEGG data

我們繼續(xù)使用上面的數(shù)據(jù)進(jìn)行KEGG富集分析:

> kegg <- enrichKEGG(genelist, organism = 'hsa', keyType = 'kegg', pvalueCutoff = 0.05,pAdjustMethod = 'BH',                      minGSSize = 10,maxGSSize = 500,qvalueCutoff = 0.2,use_internal_data = FALSE)> head(kegg)               ID                                  Description GeneRatio  BgRatio       pvalue     p.adjust       qvaluehsa04658 hsa04658             Th1 and Th2 cell differentiation     11/76  92/7404 1.750537e-09 2.765849e-07 2.026938e-07hsa05310 hsa05310                                       Asthma      7/76  31/7404 1.956862e-08 1.433518e-06 1.050546e-06hsa04672 hsa04672 Intestinal immune network for IgA production      8/76  49/7404 2.721869e-08 1.433518e-06 1.050546e-06hsa05168 hsa05168                     Herpes simplex infection     13/76 185/7404 3.744992e-08 1.479272e-06 1.084077e-06hsa05140 hsa05140                                Leishmaniasis      9/76  74/7404 5.040165e-08 1.592692e-06 1.167196e-06hsa05330 hsa05330                          Allograft rejection      7/76  38/7404 8.868232e-08 2.335301e-06 1.711413e-06                                                                    geneID Counthsa04658              915/916/2353/3113/3117/3119/3122/3458/3565/3932/6775    11hsa05310                                 959/2205/3113/3117/3119/3122/3565     7hsa04672                             959/7852/3113/3117/3119/3122/3565/608     8hsa05168 6352/972/54205/1936/2353/3113/3117/3119/3122/64135/3434/3458/5187    13hsa05140                      2209/2212/2353/3113/3117/3119/3122/3458/3565     9hsa05330                                 959/3113/3117/3119/3122/3458/3565     7> dim(kegg)[1] 30  9# 簡單可視化> dotplot(kegg, showCategory=30)

dotplot

4、GSEA富集分析

clusterProfiler provides enricher function for hypergeometric test and GSEAfunction for gene set enrichment analysis that are designed to accept user defined annotation.

這里使用clusterProfiler里面的GSEA函數(shù)進(jìn)行GSEA富集分析,并與使用超幾何分布富集(enricher函數(shù))的結(jié)果進(jìn)行簡單比較,enricher函數(shù)與GSEA函數(shù)用法基本相同,因此這里只給出GSEA的用法及參數(shù)。

GSEA      a universal gene set enrichment analysis toolsUsage:  GSEA(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,       maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH", TERM2GENE,       TERM2NAME = NA, verbose = TRUE, seed = FALSE, by = "fgsea")Arguments:geneList           order ranked geneListexponent           weight of each stepnPerm              number of permutationsminGSSize          minimal size of each geneSet for analyzingmaxGSSize          maximal size of genes annotated for testingpvalueCutoff       pvalue cutoffpAdjustMethod      p value adjustment methodTERM2GENE          user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and geneTERM2NAME          user input of TERM TO NAME mapping, a data.frame of 2 column with term and nameverbose            logicalseed               logicalby                 one of ’fgsea’ or ’DOSE’

在進(jìn)行富集分析之前需要對數(shù)據(jù)做一個(gè)預(yù)處理——排序。

> library(dplyr)> geneList <- select(degenes, Entrez.ID, Fold.Change); head(geneList)  Entrez.ID Fold.Change1       202    2.5553542     26289    1.3500513       306   -2.3287364     55843    5.0641835       433    2.0615356       472    2.313447> geneList.sort <- arrange(geneList, desc(Fold.Change)); head(geneList.sort)  Entrez.ID Fold.Change1      3512    36.473322      3117    35.586853      3113    24.101514       916    14.897635      5996    14.674176      3119    11.12233> gene <- geneList.sort$Entrez.ID

這里使用的是broad GSEA提供的gene sets 來提供TERM2GENE:

> gmtfile <- system.file("extdata", "c5.cc.v5.0.entrez.gmt", package="clusterProfiler")> c5 <- read.gmt(gmtfile)> head(c5)          ont  gene1 NUCLEOPLASM  31902 NUCLEOPLASM  25473 NUCLEOPLASM 261734 NUCLEOPLASM  94395 NUCLEOPLASM 575086 NUCLEOPLASM  6837

萬事俱備,只欠東風(fēng)。現(xiàn)在可以開始分析了,先進(jìn)行超幾何分布的富集分析:

### 先使用基于超幾何分布的富集分析> enrich <- enricher(gene, TERM2GENE=c5); head(enrich)                                                                                       ID                                  Description GeneRatio BgRatio     pvalue  p.adjustIMMUNOLOGICAL_SYNAPSE                                               IMMUNOLOGICAL_SYNAPSE                        IMMUNOLOGICAL_SYNAPSE      2/55 11/5270 0.00553797 0.2547466LYSOSOME                                                                         LYSOSOME                                     LYSOSOME      3/55 61/5270 0.02528071 0.3336995LYTIC_VACUOLE                                                               LYTIC_VACUOLE                                LYTIC_VACUOLE      3/55 61/5270 0.02528071 0.3336995VACUOLE                                                                           VACUOLE                                      VACUOLE      3/55 69/5270 0.03472762 0.3336995LIPID_RAFT                                                                     LIPID_RAFT                                   LIPID_RAFT      2/55 29/5270 0.03627169 0.3336995PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX      1/55 10/5270 0.09967809 0.7338789                                                qvalue         geneID CountIMMUNOLOGICAL_SYNAPSE                        0.2390071    50852/84433     2LYSOSOME                                     0.3130819 3122/9098/8692     3LYTIC_VACUOLE                                0.3130819 3122/9098/8692     3VACUOLE                                      0.3130819 3122/9098/8692     3LIPID_RAFT                                   0.3130819     3932/84433     2PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX 0.6885363          54205     1

再做GSEA富集分析,在此之前需要對輸入gene list做一下處理,包括三步:

## assume 1st column is ID## 2nd column is FC> head(geneList)  Entrez.ID Fold.Change1       202    2.5553542     26289    1.3500513       306   -2.3287364     55843    5.0641835       433    2.0615356       472    2.313447## feature 1: numeric vector> glist <- geneList[,2];head(glist)[1]  2.555354  1.350051 -2.328736  5.064183  2.061535  2.313447## feature 2: named vector> names(glist) <- as.character(geneList[,1]);head(glist)      202     26289       306     55843       433       472  2.555354  1.350051 -2.328736  5.064183  2.061535  2.313447 ## feature 3: decreasing order> glist <- sort(glist,decreasing = T); head(glist)    3512     3117     3113      916     5996     3119 36.47332 35.58685 24.10151 14.89763 14.67417 11.12233

輸入文件準(zhǔn)備好了盡可以進(jìn)行GSEA富集分析了:

> gsea <- GSEA(glist, TERM2GENE=c5, verbose=FALSE, pvalueCutoff = 0.8); head(gsea)                                       ID          Description setSize enrichmentScore        NES    pvalue  p.adjust   qvalues rank                   leading_edgeMEMBRANE                         MEMBRANE             MEMBRANE      30       0.4525068  1.2643778 0.1896024 0.6880521 0.6880521   29 tags=37%, list=23%, signal=37%PLASMA_MEMBRANE           PLASMA_MEMBRANE      PLASMA_MEMBRANE      28       0.4358283  1.2085736 0.2435766 0.6880521 0.6880521   29 tags=36%, list=23%, signal=35%CYTOPLASMIC_PART         CYTOPLASMIC_PART     CYTOPLASMIC_PART      12      -0.2809599 -1.1642120 0.2481203 0.6880521 0.6880521   34 tags=67%, list=27%, signal=54%MEMBRANE_PART               MEMBRANE_PART        MEMBRANE_PART      27       0.3603900  0.9960600 0.4928131 0.6880521 0.6880521   68 tags=70%, list=53%, signal=42%PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART      24       0.3593591  0.9832720 0.5092593 0.6880521 0.6880521   68 tags=71%, list=53%, signal=41%INTEGRAL_TO_MEMBRANE INTEGRAL_TO_MEMBRANE INTEGRAL_TO_MEMBRANE      22       0.3618337  0.9738809 0.5191710 0.6880521 0.6880521   68 tags=73%, list=53%, signal=41%                                                                                                        core_enrichmentMEMBRANE                                                          916/5996/3122/7852/972/969/6402/2205/56253/10225/3738PLASMA_MEMBRANE                                                       916/5996/3122/7852/969/6402/2205/56253/10225/3738CYTOPLASMIC_PART                                                                    8692/54205/1936/2879/9531/293/23787MEMBRANE_PART        916/7852/972/969/6402/2205/10225/3738/3932/30061/9308/608/51266/50852/51348/29121/1235/84433/22914PLASMA_MEMBRANE_PART         916/7852/969/6402/2205/10225/3738/3932/30061/9308/51266/50852/51348/29121/1235/84433/22914INTEGRAL_TO_MEMBRANE                7852/972/969/6402/2205/10225/3738/30061/9308/608/51266/50852/51348/29121/1235/22914

不要問我為什么要pvalueCutoff設(shè)置0.8,因?yàn)橐恢闭{(diào)大到0.8才富集到結(jié)果。。??梢姅?shù)據(jù)應(yīng)該是有問題的,但這里作為一個(gè)實(shí)踐就不管那么多了。
而且,clusterProfiler還支持GSEA的GO、KEGG富集。

A common approach in analyzing gene expression profiles was identifying differential expressed genes that are deemed interesting. The enrichment analysis we demonstrated previous were based on these differential expressed genes. This approach will find genes where the difference is large, but it will not detect a situation where the difference is small, but evidenced in coordinated way in a set of related genes. Gene Set Enrichment Analysis (GSEA)(Subramanian et al. 2005) directly addresses this limitation. All genes can be used in GSEA; GSEA aggregates the per gene statistics across genes within a gene set, therefore making it possible to detect situations where all genes in a predefined set change in a small but coordinated way. Since it is likely that many relevant phenotypic differences are manifested by small but consistent changes in a set of genes.

> gsea.go <- gseGO(glist,OrgDb = org.Hs.eg.db, pvalueCutoff = 0.5); head(gsea.go)preparing geneSet collections...GSEA analysis...leading edge analysis...done...                   ID                                 Description setSize enrichmentScore      NES      pvalue  p.adjust    qvalues rank                   leading_edgeGO:0031294 GO:0031294                    lymphocyte costimulation      11       0.7832645 1.872828 0.001186240 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%GO:0031295 GO:0031295                        T cell costimulation      11       0.7832645 1.872828 0.001186240 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%GO:0002376 GO:0002376                       immune system process      74       0.6032615 1.738943 0.002004008 0.1049915 0.09363642   60 tags=64%, list=47%, signal=80%GO:0042110 GO:0042110                           T cell activation      23       0.6722496 1.825647 0.002143623 0.1049915 0.09363642   24 tags=48%, list=19%, signal=47%GO:0050851 GO:0050851 antigen receptor-mediated signaling pathway      11       0.7582504 1.813018 0.002372479 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%GO:0050852 GO:0050852           T cell receptor signaling pathway      10       0.7963700 1.872212 0.002380952 0.1049915 0.09363642   10  tags=50%, list=8%, signal=50%                                                                                                                                                                                                                                                core_enrichmentGO:0031294                                                                                                                                                                                                                              3117/3113/916/3119/3122GO:0031295                                                                                                                                                                                                                              3117/3113/916/3119/3122GO:0002376 3512/3117/3113/916/5996/3119/914/10964/3122/7852/972/4068/6402/6352/84636/915/2205/51176/4069/2213/56253/10225/55619/4332/2212/6375/7100/3434/8638/3932/2209/51316/30061/9308/64135/8320/10578/3458/10875/608/83666/51266/50852/3437/51348/2353/9111GO:0042110                                                                                                                                                                                                  3117/3113/916/3119/914/3122/972/6352/915/51176/2213GO:0050851                                                                                                                                                                                                                              3117/3113/916/3119/3122GO:0050852                                                                                                                                                                                                                              3117/3113/916/3119/3122

順便再利用上面處理好的glist進(jìn)行一下KEGG富集到的某一條通路的可視化:

> library(pathview)> pathview(gene.data = glist, pathway.id = 'hsa04658',species="hsa", limit=list(gene=max(abs(glist)), cpd=1))

上面的命令會在當(dāng)前目錄生成3個(gè)文件:一個(gè)原始KEGG通路圖片,一個(gè)標(biāo)注了上下調(diào)基因的,最后一個(gè)文本文件則是一些KEGG通路信息。

image.png

hsa04658.pathview.png

本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
得到差異分析之后進(jìn)行功能富集分析
富集分析常見類型
clusterProfiler|GSEA富集分析及可視化
單細(xì)胞功能注釋和富集分析(GO、KEGG、GSEA)(2021公開課配套筆記)
clusterProfiler——GO和KEGG分析之R代碼
【R】clusterProfiler的GO/KEGG富集分析用法小結(jié)
更多類似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服