作為一名專業(yè)的硬件設(shè)計及測試工程師,我們每天都在使用各種不同的數(shù)字示波器進行相關(guān)電氣信號量的量測。 與這些示波器相配的探頭種類也非常多,包括無源探頭(包括高壓探頭,傳輸線探頭)、有源探頭(包括有源單端探頭、有源差分探頭等),電流探頭、光探頭等。每種探頭各有其優(yōu)缺點,因而各有其適用的場合。其中,有源探頭因具有帶寬高,輸入電容小,地環(huán)路小等優(yōu)點從而被廣泛使用在高速數(shù)字量測領(lǐng)域,但有源探頭的價位高,動態(tài)范圍小,靜電敏感,校準麻煩,因此,每個工程師使用示波器的入門級探頭通常是無源探頭。最常見的500Mhz的無源電壓探頭適用于一般的電路測量和快速診斷,可以滿足大多數(shù)的低速數(shù)字信號、TV、電源和其它的一些典型的示波器應(yīng)用。 本文我們將集中討論無源電壓探頭的模型和參數(shù)設(shè)定以及使用校準原理。
一、10倍無源探頭的模型以及輸入負載設(shè)定
圖1. 探頭原理圖
圖1是工程師常用的10倍無源電壓探頭的原理圖,其中,Rp (9 MΩ)和Cp位于探頭尖端內(nèi),Rp為探頭輸入阻抗, Cp為探頭輸入電容, R1 (1 MΩ)表示示波器的輸入阻抗,C1表示示波器的輸入電容和同軸電纜等效電容以及探頭補償箱電容的組合值。為了精確地測量,兩個RC時間常量(RpCp和R1C1)必須相等;任何不平衡都會帶來測量波形的失真,從來引起使一些參數(shù)如上升時間、幅度的測量結(jié)果不準確。因此,在測量前需要校準示波器的探頭的工作以保證測量結(jié)果的準確性。 從探頭的信號模型我們可以分析, 對于信號的DC量測,輸入容性Cp和C1等效為開路。信號通過Rp和R1進行分壓,最終示波器的輸入為:
Vout=[R1/Rp+R1]*Vin=1/10* Vin
示波器輸入信號衰減為待測輸入信號的1/10。對于較高頻率的輸入信號,容抗對于信號的影響會大于阻抗。例如,一個標準的1MΩ~10pF的無源電壓探頭,輸入信號的頻率為100MHz,此時,探頭輸入容抗為Xc(Cp) = 1/(2×π×f×C)=159Ω,容抗遠遠小于9MΩ的探頭阻抗,信號電流更多的會通過輸入電容提供的低阻回路,9MΩ阻抗的高阻回路等效為旁路。也可以理解為159 Ω和9MΩ的并聯(lián)之后等效阻抗為159 Ω。此時,實際輸入到示波器的信號幅度(AC/高頻)是由探頭的輸入電容以及回路總電容的比值決定,等效為:
Vout=[Cp/Cp+C1]*Vin
一般來說,無源探頭的電纜存在8-10pF/foot的容性負載(1 foot 英尺=12 inches 英寸=0.3048 metre 米),1.5nS/foot的上升時間。 對于一個6feet的電纜就存在60pF容性,加上一般示波器的20pF的輸入電容以及一些雜散,大致為90pF左右。根據(jù)1:10的分壓,探頭的輸入電容應(yīng)該為10pF左右才能滿足 Vout/Vin=[10/10+90]=1/10 輸入衰減10倍的特性。考慮到探頭和電纜容性的一些誤差,需要使用探頭補償電容箱來進行一個回路補償,由于誤差,無源電壓探頭的輸入容性一般為8~12pF之間。目前主流的10倍無源電壓探頭的輸入負載模型一般都是輸入電容8~12pF,輸入電阻9M歐。
二、無源電壓探頭的校準
討論到這里,對于無源探頭的輸入模型大家應(yīng)該有了一定的了解,那為什么為了精確地測量,兩個RC時間常量(RpCp和R1C1)必須相等,測量前需要校準呢?我們可以再進一步簡化探頭模型為一個更簡單的阻容分壓電路如下:
讓我們來進行一個簡單的推導(dǎo)計算:
1.計算初始值uC2(0+)由于電容電壓發(fā)生躍變,要根據(jù)電荷守恒定律和KVL來確定
2.計算穩(wěn)態(tài)uC2(¥)電容開路時,按照電阻分壓公式得到
3.計算時間常數(shù)
4.用三要素公式得到電容電壓uC2(t)
我們可以看到,波形有3種情況:
1.完全補償
2.過補償
3.欠補償
以下圖示給出了欠補償、過補償和合理補償三種情況下探頭產(chǎn)生的波形。
探頭欠補償波形圖
探頭過補償說明圖
探頭正常補償說明圖
所以, 在獲得一臺可以工作的示波器和探頭后應(yīng)該要做的第一項工作是校準探頭以保證其內(nèi)部RC時間常量匹配。這時需要將探頭連接到示波器的探頭補償輸出。然后使用非磁性調(diào)節(jié)工具調(diào)節(jié)補償箱中的調(diào)節(jié)螺螺絲完成校準一直觀察到平坦的波形響應(yīng)。不要太頻繁校準,因為沒有必要。
a.抗干擾能力強,因為兩根差分走線之間的耦合很好,當外界存在噪聲干擾時,幾乎是同時被耦合到兩條線上,而接收端關(guān)心的只是兩信號的差值,所以外界的共模噪聲可以被最大程度抵消。 b.能有效抑制EMI,同樣的道理,由于兩根信號的極性相反,他們對外輻射的電磁場可以相互抵消,耦合的越緊密,泄放到外界的電磁能量越少。 c.時序定位精確,由于差分信號的開關(guān)變化是位于兩個信號的交點,而不像普通單端信號依靠高低兩個閾值電壓判斷,因而受工藝,溫度的影響小,能降低時序上的誤差,同時也更適合于低幅度信號的電路。目前流行的LVDS(lowvoltagedifferentialsignaling)就是指這種小振幅差分信號技術(shù)。 差分信號的結(jié)構(gòu)特點要求對應(yīng)的測試設(shè)備也必須是差分拓撲,差分探頭因此成為現(xiàn)代示波器的主流配件。下圖1是典型的有源差分探頭電路結(jié)構(gòu)圖:
點擊此處查看全部新聞圖片
針對高頻信號測試,有源差分探頭的主要好處是低輸入電容、比單端探頭抑制共模噪聲的能力要高很多,其缺點主要體現(xiàn)在價格普遍較高以及需要額外的電源。比如力科公司的WaveLink系列高帶寬差分探頭即是這類探頭的代表。
2、差分探頭具有高的共模抑制比
什么是共模抑制比,簡單來說,就是差動放大電路中對信號共模成分的抑制能力,其定義為放大器對差模信號的電壓放大倍數(shù)Adm與對共模信號的電壓放大倍數(shù)Acm之比,英文全稱是CommonModeRejectionRatio,一般用簡寫CMRR來表示。
點擊此處查看全部新聞圖片
我們可以這樣定義:兩個輸入端分別對地的電壓平均值為共模電壓Vcm,經(jīng)過差動放大器后的增益為共模增益Acm;兩個輸入端之間的相對電壓差為差模電壓Vdm,其經(jīng)過差模放大器之后的增益為Adm。CMRR計算公式如下:
點擊此處查看全部新聞圖片 哪些因素會影響探頭的共模抑制比呢? 很顯然,CMRR值越大越好,一般在60dB(1000:1)左右,但隨著頻率增加CMRR會逐漸減少。因為越快的信號邊沿越容易再正負兩端產(chǎn)生偏差,因而也會帶來更多的共模電壓,如下圖所示。 點擊此處查看全部新聞圖片 CMRR為什么很重要,因為差分探頭的CMRR指標若不好,則共模電壓會加入差分電壓內(nèi),造成測量上的誤差,下面為一實例: 點擊此處查看全部新聞圖片 單端探頭的CMRR指標為什么很難做高?單端探頭模型表明了探頭放大器到“大地”地線之間有一個寄生電阻和寄生電感,這兩個元件構(gòu)成了由探頭電纜屏蔽層和大地地線組成的傳輸線所產(chǎn)出的特性阻抗。這一特性阻抗是很重要的,因為當你給單端探頭加一個共模信號時,地線電感值就與這一特性阻抗一起組成了一個分壓器。此分壓器對到達放大器的地線信號起衰減作用。由于放大器的信號和地線輸入信號受到的衰減各不相同,在放大器的輸入端上就出現(xiàn)了一個凈信號,從而使放大器有輸出信號。地線電感越大,共模抑制能力越低,所以當使用單端探頭時,保持地線盡量短是很重要的。 當你給差分探頭加上一個共模信號時,放大器的正負兩個輸入端都有同一個信號。所產(chǎn)生的唯一輸出信號是該放大器抑制特性的函數(shù),它與連線電感無關(guān)。因此,在存在很大的共模噪音時,用差分探頭來測量更為精確。這是差分探頭與單端探頭之間很典型的區(qū)別,除非單端探頭的接地連接的電感非常小,而這一點在實際實踐中是很難做到的。所以實際的差分探頭CMRR一般都優(yōu)于單端探頭。 所謂“浮地”測量,即測量的兩個點都不處于接地電位,這是一種典型的差分測量。“信號公共線”與地之間的電壓可能會升高到數(shù)百伏。 通過切斷標準三頭AC插座地線的方法或使用一個交流隔離變壓器,切斷中線與地線的連接。將示波器從保護地線浮動起來,以減小地環(huán)路的影響。這種方法其實并不可行,因為在建筑物的布線中中線也許在某處已經(jīng)與地線相連,是不安全的測量方法,會帶來l人身傷害,儀器和電路損壞! 此外,它違反了工業(yè)健康和安全規(guī)定,且獲得的測量結(jié)果也差。而且,交流供電儀器在地面浮動時會出現(xiàn)一個大的寄生電容。因此,浮動測量將受到振蕩的破壞。 點擊此處查看全部新聞圖片 總而言之,將示波器“浮地”非常糟糕的注意,這將導(dǎo)致: ――損壞被測器件; ――損壞示波器 ――給人身帶來潛在傷害 ――導(dǎo)致很差的測量精度 問題該如何解決:
解決方案:
簡介
測量PCIe,SATA和其它快速模擬和數(shù)字信號等寬帶信號時總是需要高阻抗探頭。通過線纜直接連接高頻信號到測量儀器只是適合通常的一致性測試和PCB驗證等應(yīng)用場合,但是大多數(shù)信號必須在系統(tǒng)運行時進行觀察以便確定整個工作系統(tǒng)中的信號特性。大多數(shù)探頭是單端,也就是測量共地信號,需要通過地線連接探頭尖端附近的地和待測設(shè)備的地。這種探頭很難測量本地信號地與儀器地有很大區(qū)別的信號。地也可以與待測設(shè)備的地在一起。
設(shè)計者可以通過差分傳輸高速信號避免地連續(xù)性的問題而解決這個問題,但是這大大增加了測量挑戰(zhàn),因為只測量一個信號對地不能很好地表達出這個差分信號。工程師可以使用兩個探頭測量兩個差分信號對地的信號然后相減,但這將占用兩個通道,而且依賴于兩個探頭的精確匹配。本文將解釋這個方法將比真正的差分探頭帶來更大的負載。
所有的高阻抗差分探頭對于被測信號都表現(xiàn)出負載阻抗,使得信號產(chǎn)生失真。本文將談到為什么差分探頭比單端探頭的固有負載要小,并且描述一種比以前任何一種探頭都具有最小負載效應(yīng)的差分探頭。待測信號的探頭額定負載效應(yīng)可以量化,同時將展示探頭負載效應(yīng)的評估方法。
單端探頭的負載效應(yīng)
單端探頭有兩個輸入端——信號(尖端)和地。等效電路包括電感、DC電阻并聯(lián)的輸入電容和地夾的電感。地夾電感可以和尖端電感歸結(jié)在一起以簡化電路。有源探頭的等效電路如Figure1所示。給出的電感有兩個——尖端和地夾電感。地夾電感通常占主導(dǎo)地位并依據(jù)用戶連接待測系統(tǒng)地的方式而改變。
差分探頭包括兩個獨立的輸入端子和一個差分放大器,如Figure 2所示。因為有源電路只放大兩個輸入,公共地連接還有相關(guān)的電感被去除。剩下的電感是兩個尖端電感的和,但是由于Ltip通常遠小于Lgnd,負載電感變得很小。尖端電感也是固定的,不依賴于任何因不同用戶而改變的地夾。此外,電容減半,因為負載電容和原有的輸入電容串聯(lián)。
此外,連接兩個高頻尖端到放大器的輸入也增加了困難。不同的待測電路要求不同的位置和引線空間,這些尖端的任何移動可以顯著改變探頭的高頻響應(yīng)。為了抑制共模信號,每個尖端的特性必須是一致的,很難創(chuàng)建可以在移動時保持匹配的物理尖端。
新的WaveLink系列高帶寬探頭解決了這些問題。最新的SiGe工藝支持具有高頻性能的高帶寬差分放大器,D600A-AT是7.5GHz。采用了非常對稱的拓撲保證了即便是在最高頻率時尖端共模電壓能有效抑制。
和可調(diào)整的尖端相關(guān)的問題已用新的專利輸入電路解決,允許尖端和小的傳輸線一起連接到放大器。放大器和尖端構(gòu)筑在靈活的底層,尖端可被去除。用戶可以調(diào)整探頭的尖端精確匹配信號的空間從而獲得在不導(dǎo)致任何探頭負載或頻響變化的測量。
直到幾年前,儀器制造商僅提到探頭的輸入電阻和電容。這表明用戶的地夾的電感占據(jù)了主導(dǎo),通過這個連接只有很少的控制。結(jié)果是,探頭制造商忽略了所有在量化探頭時導(dǎo)致地夾效應(yīng)降低的信號。事實上,規(guī)定的低電感夾具經(jīng)常用來測量探頭性能。使用這樣的夾具,制造商展示了在任何實際測量情況中都是不可能的(到地的真實連接時必須的)頻響和帶寬性能。
查看Figure 1中的等效電路,可以看到諧振頻率(1/(2*PI*sqrt(LC))給出)點的探頭輸入阻抗是0歐姆——完全消除了被測信號!最近一些制造商開始注意這個問題并設(shè)計具有更好輸入特性的探頭。Figure 3展示了這種探頭(Probe A)的等效電路。這是許多給出這個探頭精確依賴于尖端和地夾的等效負載模型之一。這個探頭還有一個諧振點大概是2GHz,該頻點的阻抗被電阻限制到大約165歐姆。
決定被測信號的阻抗效應(yīng)并不簡單,因為依賴于待測電路的阻抗。出于這個原因,阻抗 vs 頻率曲線是不夠的;精確的等效電路是首要的,因為特定待測電路的效應(yīng)可以計算出來。
為了比較差分探頭的性能,通常在良好定義和常數(shù)電路中畫出負載效應(yīng)。比如,每個探頭在50歐姆理想環(huán)境中產(chǎn)生的插損如Figure 6所示。插損用dB表示;作為電壓表示,必須除以20,采用反對數(shù)。比如Probe B導(dǎo)致的4.6dB的插損會產(chǎn)生41%的幅度損失。這對于被探測的信號有顯著影響。
取決于探頭負載,延遲或許不是頻率常數(shù)。這意味著信號由不同的沿速率(不同頻率成份)會被延遲不同的數(shù)量。當探頭和輸入從容性變到感性諧振時,延遲也變化。甚至探頭試圖減少LC諧振的幅度影響,也會使信號的時間延遲失真。唯一真正的解決方案是移到被測頻率之上的諧振頻率。
頻域中,時間偏移表現(xiàn)為群時延。定義為相位改變除以頻率的改變。理想的傳輸線有恒定的群時延(意味著延遲獨立于頻率)。同樣,容性負載也有恒定的群時延。更復(fù)雜的負載電路表現(xiàn)出隨信號變化的頻率成份而改變的延遲。這產(chǎn)生了信號中的確定性抖動,通過替換信號的連接而簡化。
示例探頭的群時延如Figure 7所示。垂直單位是ns。注意,類似于幅度損失,延遲也是被測電路阻抗的函數(shù)。此外,如果有人預(yù)計探頭在信號上產(chǎn)生的影響,特定的信號屬性將包括在仿真中。
新的WaveLinks探頭不通過同一個測試信號,測量結(jié)果如Figure 10 所示。由于探頭負載(<1%)信號幅度有輕微的減少,但主要的信號邊沿完全沒有失真。探頭阻抗產(chǎn)生的延遲是2ps,不會隨著信號頻率改變。
這個同樣的夾具可以用于頻域測量。通過測試夾具的信號插損可被測量,由探頭負載增加的插損,還有群時延都可被顯示。
探頭負載阻抗可以引起被測信號幅度和時間上的顯著變化。越低的探頭負載阻抗,這些改變越厲害,被測電路的特定屬性越依賴于這些改變。這些改變,尤其是時間偏斜會被顯著損害,因為通過功能系統(tǒng)傳播導(dǎo)致系統(tǒng)中其他點的失效測量。一個探頭輸入阻抗的準確模型要求完全評估這些在用探頭時可以看到的效應(yīng)。
差分探頭具有固有的較低負載,現(xiàn)在的問題是增加到非常高的帶寬差分放大器(這里是7.5GHz)已被解決,這么一個探頭的所有的高頻測量是最好的。WaveLink系列探頭在這些任何已有的高頻探頭中具有最低的負載,提供了測試信號的最低失真。
聯(lián)系客服