一鑒二查三治療,新一代長效胰島素有妙招!
HbA1c以外的血糖維度究竟該如何精確度量?科技發(fā)展使得動態(tài)血糖監(jiān)測、掃描式葡萄糖監(jiān)測等血糖監(jiān)測手段愈加豐富,但血糖控制狀況評價指標呼喚全面、有效、簡單、直觀的統(tǒng)一標準。
TIR就是時下研究火熱的新標準。狹義的TIR是指24小時內葡萄糖在目標范圍內(通常為3.9~10.0 mmol/L,或為3.9~7.8 mmol/L)的時間(一般用min表示)或其所占的百分比[12]。在CGM報告中,TIR可以餅圖的形式直觀表示。通常所說的TIR為狹義的TIR,而廣義的TIR可以指葡萄糖處于不同范圍內(低值、高值)的時間[12,13],臨床中亦應對廣義的TIR進行定量。當然,在臨床應用中可以將TIR與其他血糖指標結合起來綜合反映個體血糖全貌。
一項納入18項隨機對照研究的系統(tǒng)性綜述顯示,TIR和HbA1c之間存在線性關系[14],TIR能更好的反映相同HbA1c時低血糖的發(fā)生狀況和血糖變異程度[15]。TIR與糖尿病并發(fā)癥的關系如何呢?美國Jaeb健康研究中心Beck教授利用DCCT數(shù)據(jù),分析TIR與糖尿病并發(fā)癥進展的相關性,以驗證TIR是否可以作為臨床試驗的結局指標,結果發(fā)現(xiàn),TIR越短,糖尿病患者微量白蛋白尿、視網膜病變發(fā)生率越高[16]。中國首個TIR與糖尿病并發(fā)癥研究亦證實,TIR與糖尿病患者視網膜病變嚴重程度呈顯著負相關(圖1)[17]。另一項納入9028例糖尿病或非糖尿病的危重癥患者的回顧性研究表明,TIR越短,糖尿病危重癥患者死亡風險越大[18]。
圖1 中國證據(jù):TIR與糖尿病患者視網膜病變嚴重程度呈顯著負相關
2019年《TIR國際共識推薦》針對1型糖尿?。═1DM)/T2DM、老年或高風險T1DM/T2DM、T1DM合并妊娠、T2DM合并妊娠/妊娠糖尿病四類人群,確定了個體化的TIR目標值(圖2)[1],為臨床實踐提供了依據(jù)。
圖2 TIR國際共識推薦推薦的個體化TIR目標值
血糖管理已經邁入新維度,我們有沒有辦法來積極應對?
新型長效基礎胰島素類似物德谷胰島素上市后,已成為臨床醫(yī)生的得力助手。德谷胰島素在皮下能夠形成可溶性的多六聚體長鏈,這是其主要延長作用機制;血液中胰島素單體的緩慢釋放并與白蛋白結合是其次要延長作用機制[19]。德谷胰島素半衰期約25小時,可實現(xiàn)24小時平穩(wěn)控糖(圖3)[20,21]。研究表明,在同樣給藥間隔的條件下,半衰期長的藥物波峰/波谷波動更?。▓D4)。
圖3 德谷胰島素24小時平穩(wěn)控糖
圖4 同樣給藥間隔,半衰期長的藥物波峰/波谷波動更小
研究證實,德谷胰島素不僅改善HbA1c、空腹血糖,還能減少低血糖風險,減少胰島素劑量[22]。與甘精胰島素相比,德谷胰島素降糖療效的日內變異性和降糖療效的日間變異性更低[23],其中降糖療效的日間變異性為甘精胰島素的1/4(圖5)[21]。一項多中心、隨機對照、開放標簽的研究表明,對于新起始胰島素治療的T2DM患者,德谷胰島素降糖療效的日間變異性較甘精胰島素更低[24];另一項研究采取動態(tài)血糖監(jiān)測系統(tǒng)(CGMS)評估轉換為德谷胰島素治療的血糖變異性,結果由其他基礎胰島素轉換為德谷胰島素治療后,降糖療效的日內變異性及降糖療效的日間變異性也均顯著降低[25]。可見德谷胰島素是多維度優(yōu)化血糖管理的有效手段。
圖5 德谷胰島素降糖療效的日間變異性為甘精胰島素的1/4
血糖變異性、低血糖和HbA1c互相關聯(lián),共同影響糖尿病患者管理目標。科技發(fā)展使得血糖控制的精確度量成為可能,TIR作為新型的血糖評估指標,可幫助改善糖尿病患者血糖管理。而新型長效基礎胰島素類似物——德谷胰島素,具有獨特的延長作用機制,實現(xiàn)24小時平穩(wěn)控糖。研究證實,德谷胰島素在有效降糖同時,血糖變異性更低、低血糖風險更小,可更好地助力多維度優(yōu)化血糖管理。
參考文獻
[1]Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus>[2]Skyler J S. Diabetic complications. The importance of glucose control.[J]. Endocrinology & Metabolism Clinics of North America, 1996, 25(2):243-54.
[3]Stratton IM, et al. Association of glycaemia with macrovas- cular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study[J]. BMJ, 2000, 321(7258):405-12.
[4]Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does![J]. Diabetes Care, 2015, 38:1610-4.
[5]Patel A, MaeMbaon S, Chalmers J, et al. The ADVANCE collaboartive gorup. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2008, 358: 2560-72.
[6]Gerstein HC, Miller ME, Byington RP, et al. The action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358: 2545-2559.
[7]Beck R W, Connor C G, Mullen D M, et al. The Fallacy of Average: How Using HbA1c Alone to Assess Glycemic Control Can Be Misleading[J]. Diabetes Care, 2017, 40(8):994-999.
[8]Lipska K J, Margaret W E, Huang E S, et al. HbA1cand Risk of Severe Hypoglycemia in Type 2 Diabetes[J]. Diabetes Care, 2013, 36(11):3535-3542.
[9]Oskarsson P, Antuna R, Geelhoed-Duijvestijn P, et al. Impact of flash glucose monitoring>[10]Penckofer S, Quinn L, Byrn M, et al. Does glycemic variability impact mood and quality of life?[J]. Diabetes Technology & Therapeutics, 2012, 14(4):303-10.
[11]Tang X, Li S, Wang Y, et al. Glycemic variability evaluated by continuous glucose monitoring system is associated with the 10-y cardiovascular risk of diabetic patients with well-controlled HbA1c[J]. Clinica Chimica Acta, 2016, 461:146-150.
[12]戴冬君. 持續(xù)葡萄糖監(jiān)測新指標:葡萄糖在目標范圍內時間的臨床意義解析[J]. 中華糖尿病雜志, 2019, 11(2):139-142.
[13]Danne T, Nimri R, Battelino T, et al. International Consensus>[14]Vigersky RA, et al. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes[J]. Diabetes Technol Ther, 2019, 21(2):81-85.
[15]Vigersky RA, et al. Going beyond HbA1c to understand the benefits of advanced diabetes therapies[J]. J Diabetes, 2019, 11(1)23-31.
[16]Beck RW, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials[j]. Diabetes Care, 2019, 42(3):400-405.
[17]Lu J, et al. Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes[J]. Diabetes Care. 2018, 41(11):2370-2376.
[18]Lanspa MJ, et al. Chest. 2019 Jun.
[19]Ib J, Svend H, Thomas H J, et al. Design of the Novel Protraction Mechanism of Insulin Degludec, an Ultra-long-Acting Basal Insulin[J]. Pharmaceutical Research, 2012, 29(8):2104-2114.
[20]Heise T, H?velmann U, Nosek L, et al. Comparison of the pharmacokinetic and pharmacodynamic profiles of insulin degludec and insulin glargine[J]. Expert Opinion>[21]Heise T, Hermanski L, Nosek L, et al. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady‐state conditions in type 1 diabetes[J]. Diabetes Obesity & Metabolism, 2012, 14(9):859-864.
[22]Evans M, Mcewan P, Foos V. Insulin degludec early clinical experience: does the promise from the clinical trials translate into clinical practice-a case-based evaluation[J]. J Med Econ, 2015, 18(2):96-105.
[23]Heise Tim,Kaplan Kadriye,Haahr Hanne L. Day-to-Day and Within-Day Variability in Glucose-Lowering Effect Between Insulin Degludec and Insulin Glargine (100 U/mL and 300 U/mL): A Comparison Across Studies[J]. J Diabetes Sci Technol, 2018, 12(2):356-363.
[24]Aso Y, Suzuki K, Chiba Y, et al. Effect of insulin degludec versus insulin glargine>[25]Henao-Carrillo DC, et al. J Clin Transl Endocrinol. 2018 Mar 26;12:8-12
聯(lián)系客服