初中數(shù)學(xué)的知識(shí)考點(diǎn)其實(shí)并不是很多,同學(xué)們?nèi)绻险n的時(shí)候把老師講的內(nèi)容都理解進(jìn)去了,考高分是沒(méi)問(wèn)題的,中考的時(shí)候如果想和同學(xué)之間將分?jǐn)?shù)拉開(kāi)一段距離,那么,壓軸題就是很好的得分方式。
不過(guò)我們都知道,壓軸題的題目是比較難的,所以很多同學(xué)為了時(shí)間都是直接放棄了的,而如何解中高考數(shù)學(xué)壓軸題成了很多同學(xué)關(guān)心話題。為此,王老師今天和大家分享的是初三數(shù)學(xué)過(guò)渡:9種???jí)狠S題型+5種策略,理解透徹成績(jī)115+!
九種題型
1、線段、角的計(jì)算與證明問(wèn)題
中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡(jiǎn)單題或者中檔題,目的在于考察基礎(chǔ)。第二部分往往就是開(kāi)始拉分的中難題了。
對(duì)這些題輕松掌握的意義不僅僅在于獲得分?jǐn)?shù),更重要的是對(duì)于整個(gè)做題過(guò)程中士氣,軍心的影響。線段與角的計(jì)算和證明,一般來(lái)說(shuō)難度不會(huì)很大,只要找到關(guān)鍵“題眼”,后面的路子自己就“通”了。
2、圖形位置關(guān)系
中學(xué)數(shù)學(xué)當(dāng)中,圖形位置關(guān)系主要包括點(diǎn)、線、三角形、矩形/正方形以及圓這么幾類(lèi)圖形之間的關(guān)系。在中考中會(huì)包含在函數(shù),坐標(biāo)系以及幾何問(wèn)題當(dāng)中,但主要還是通過(guò)圓與其他圖形的關(guān)系來(lái)考察,這其中最重要的就是圓與三角形的各種問(wèn)題。
3、動(dòng)態(tài)幾何
從歷年中考來(lái)看,動(dòng)態(tài)問(wèn)題經(jīng)常作為壓軸題目出現(xiàn),得分率也是最低的。動(dòng)態(tài)問(wèn)題一般分兩類(lèi),一類(lèi)是代數(shù)綜合方面,在坐標(biāo)系中有動(dòng)點(diǎn),動(dòng)直線,一般是利用多種函數(shù)交叉求解。
另一類(lèi)就是幾何綜合題,在梯形,矩形,三角形中設(shè)立動(dòng)點(diǎn)、線以及整體平移翻轉(zhuǎn),對(duì)考生的綜合分析能力進(jìn)行考察。所以說(shuō),動(dòng)態(tài)問(wèn)題是中考數(shù)學(xué)當(dāng)中的重中之重,只有完全掌握,才有機(jī)會(huì)拼高分。
4、一元二次方程與二次函數(shù)
在這一類(lèi)問(wèn)題當(dāng)中,尤以涉及的動(dòng)態(tài)幾何問(wèn)題最為艱難。幾何問(wèn)題的難點(diǎn)在于想象,構(gòu)造,往往有時(shí)候一條輔助線沒(méi)有想到,整個(gè)一道題就卡殼了。相比幾何綜合題來(lái)說(shuō),代數(shù)綜合題倒不需要太多巧妙的方法,但是對(duì)考生的計(jì)算能力以及代數(shù)功底有了比較高的要求。
中考數(shù)學(xué)當(dāng)中,代數(shù)問(wèn)題往往是以一元二次方程與二次函數(shù)為主體,多種其他知識(shí)點(diǎn)輔助的形式出現(xiàn)的。一元二次方程與二次函數(shù)問(wèn)題當(dāng)中,純粹的一元二次方程解法通常會(huì)以簡(jiǎn)單解答題的方式考察。但是在后面的中難檔大題當(dāng)中,通常會(huì)和根的判別式,整數(shù)根和拋物線等知識(shí)點(diǎn)結(jié)合。
5、多種函數(shù)交叉綜合問(wèn)題
初中數(shù)學(xué)所涉及的函數(shù)就一次函數(shù),反比例函數(shù)以及二次函數(shù)。這類(lèi)題目本身并不會(huì)太難,很少作為壓軸題出現(xiàn),一般都是作為一道中檔次題目來(lái)考察考生對(duì)于一次函數(shù)以及反比例函數(shù)的掌握。所以在中考中面對(duì)這類(lèi)問(wèn)題,一定要做到避免失分。
6、列方程(組)解應(yīng)用題
在中考中,有一類(lèi)題目說(shuō)難不難,說(shuō)不難又難,有的時(shí)候三兩下就有了思路,有的時(shí)候苦思冥想很久也沒(méi)有想法,這就是列方程或方程組解應(yīng)用題。方程可以說(shuō)是初中數(shù)學(xué)當(dāng)中最重要的部分,所以也是中考中必考內(nèi)容。
從近年來(lái)的中考來(lái)看,結(jié)合時(shí)事熱點(diǎn)考的比較多,所以還需要考生有一些生活經(jīng)驗(yàn)。實(shí)際考試中,這類(lèi)題目幾乎要么得全分,要么一分不得,但是也就那么幾種題型,所以考生只需多練多掌握各個(gè)題類(lèi),總結(jié)出一些定式,就可以從容應(yīng)對(duì)了。
7、動(dòng)態(tài)幾何與函數(shù)問(wèn)題
整體說(shuō)來(lái),代幾綜合題大概有兩個(gè)側(cè)重,第一個(gè)是側(cè)重幾何方面,利用幾何圖形的性質(zhì)結(jié)合代數(shù)知識(shí)來(lái)考察。而另一個(gè)則是側(cè)重代數(shù)方面,幾何性質(zhì)只是一個(gè)引入點(diǎn),更多的考察了考生的計(jì)算功夫。
但是這兩種側(cè)重也沒(méi)有很?chē)?yán)格的分野,很多題型都很類(lèi)似。其中通過(guò)圖中已給幾何圖形構(gòu)建函數(shù)是重點(diǎn)考察對(duì)象。做這類(lèi)題時(shí)一定要有“減少?gòu)?fù)雜性”“增大靈活性”的主體思想。
8、幾何圖形的歸納、猜想問(wèn)題
中考加大了對(duì)考生歸納,總結(jié),猜想這方面能力的考察,但是由于數(shù)列的系統(tǒng)知識(shí)要到高中才會(huì)正式考察,所以大多放在填空壓軸題來(lái)出。對(duì)于這類(lèi)歸納總結(jié)問(wèn)題來(lái)說(shuō),思考的方法是最重要的。
9、閱讀理解問(wèn)題
如今中考題型越來(lái)越活,閱讀理解題出現(xiàn)在數(shù)學(xué)當(dāng)中就是最大的一個(gè)亮點(diǎn)。閱讀理解往往是先給一個(gè)材料,或介紹一個(gè)超綱的知識(shí),或給出針對(duì)某一種題目的解法,然后再給條件出題。
對(duì)于這種題來(lái)說(shuō),如果考生為求快速而完全無(wú)視閱讀材料而直接去做題的話,往往浪費(fèi)大量時(shí)間也沒(méi)有思路,得不償失。所以如何讀懂題以及如何利用題就成為了關(guān)鍵。
解題策略
1、學(xué)會(huì)運(yùn)用數(shù)形結(jié)合思想。
數(shù)形結(jié)合思想是指從幾何直觀的角度,利用幾何圖形的性質(zhì)研究數(shù)量關(guān)系,尋求代數(shù)問(wèn)題的解決方法(以形助數(shù)),或利用數(shù)量關(guān)系來(lái)研究幾何圖形的性質(zhì),解決幾何問(wèn)題(以數(shù)助形)的一種數(shù)學(xué)思想.數(shù)形結(jié)合思想使數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來(lái),使問(wèn)題得以解決。
縱觀近幾年全國(guó)各地的中考?jí)狠S題,絕大部分都是與平面直角坐標(biāo)系有關(guān),其特點(diǎn)是通過(guò)建立點(diǎn)與數(shù)即坐標(biāo)之間的對(duì)應(yīng)關(guān)系,一方面可用代數(shù)方法研究幾何圖形的性質(zhì),另一方面又可借助幾何直觀,得到某些代數(shù)問(wèn)題的解答。
2、學(xué)會(huì)運(yùn)用函數(shù)與方程思想。
從分析問(wèn)題的數(shù)量關(guān)系入手,適當(dāng)設(shè)定未知數(shù),把所研究的數(shù)學(xué)問(wèn)題中已知量和未知量之間的數(shù)量關(guān)系,轉(zhuǎn)化為方程或方程組的數(shù)學(xué)模型,從而使問(wèn)題得到解決的思維方法,這就是方程思想。
用方程思想解題的關(guān)鍵是利用已知條件或公式、定理中的已知結(jié)論構(gòu)造方程(組)。這種思想在代數(shù)、幾何及生活實(shí)際中有著廣泛的應(yīng)用。
直線與拋物線是初中數(shù)學(xué)中的兩類(lèi)重要函數(shù),即一次函數(shù)與二次函數(shù)所表示的圖形。因此,無(wú)論是求其解析式還是研究其性質(zhì),都離不開(kāi)函數(shù)與方程的思想。例如函數(shù)解析式的確定,往往需要根據(jù)已知條件列方程或方程組并解之而得。
3、學(xué)會(huì)運(yùn)用分類(lèi)討論的思想。
分類(lèi)討論思想可用來(lái)檢測(cè)學(xué)生思維的準(zhǔn)確性與嚴(yán)密性,常常通過(guò)條件的多變性或結(jié)論的不確定性來(lái)進(jìn)行考察,有些問(wèn)題,如果不注意對(duì)各種情況分類(lèi)討論,就有可能造成錯(cuò)解或漏解,縱觀近幾年的中考?jí)狠S題分類(lèi)討論思想解題已成為新的熱點(diǎn)。
在解答某些數(shù)學(xué)問(wèn)題時(shí),有時(shí)會(huì)遇到多種情況,需要對(duì)各種情況加以分類(lèi),并逐類(lèi)求解,然后綜合得解,這就是分類(lèi)討論法。分類(lèi)討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時(shí)也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類(lèi)整理的方法。
分類(lèi)的原則:
(1)分類(lèi)中的每一部分是相互獨(dú)立的;
(2)一次分類(lèi)按一個(gè)標(biāo)準(zhǔn);
(3)分類(lèi)討論應(yīng)逐級(jí)進(jìn)行.正確的分類(lèi)必須是周全的,既不重復(fù)、也不遺漏
4、學(xué)會(huì)運(yùn)用等價(jià)轉(zhuǎn)換思想。
轉(zhuǎn)化思想是解決數(shù)學(xué)問(wèn)題的一種最基本的數(shù)學(xué)思想。在研究數(shù)學(xué)問(wèn)題時(shí),我們通常是將未知問(wèn)題轉(zhuǎn)化為已知的問(wèn)題,將復(fù)雜的問(wèn)題轉(zhuǎn)化為簡(jiǎn)單的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)化為具體的問(wèn)題,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題。
轉(zhuǎn)化的內(nèi)涵非常豐富,已知與未知、數(shù)量與圖形、圖形與圖形之間都可以通過(guò)轉(zhuǎn)化來(lái)獲得解決問(wèn)題的轉(zhuǎn)機(jī)。
任何一個(gè)數(shù)學(xué)問(wèn)題的解決都離不開(kāi)轉(zhuǎn)換的思想,初中數(shù)學(xué)中的轉(zhuǎn)換大體包括由已知向未知,由復(fù)雜向簡(jiǎn)單的轉(zhuǎn)換,而作為中考?jí)狠S題,更注意不同知識(shí)之間的聯(lián)系與轉(zhuǎn)換,一道中考?jí)狠S題一般是融代數(shù)、幾何、三角于一體的綜合試題,轉(zhuǎn)換的思路更要得到充分的應(yīng)用。
中考?jí)狠S題所考察的并非孤立的知識(shí)點(diǎn),也并非個(gè)別的思想方法,它是對(duì)考生綜合能力的一個(gè)全面考察,所涉及的知識(shí)面廣,所使用的數(shù)學(xué)思想方法也較全面。
因此有的考生對(duì)壓軸題有一種恐懼感,認(rèn)為自己的水平一般,做不了,甚至連看也沒(méi)看就放棄了,當(dāng)然也就得不到應(yīng)得的分?jǐn)?shù),為了提高壓軸題的得分率,考試中還需要有一種分題、分段的得分策略。
5、要學(xué)會(huì)搶得分點(diǎn)。
一道中考數(shù)學(xué)壓軸題解不出來(lái),不等于“一點(diǎn)不懂、一點(diǎn)不會(huì)”,要將整道題目解題思路轉(zhuǎn)化為得分點(diǎn)。如中考數(shù)學(xué)壓軸題一般在大題下都有兩至三個(gè)小題,難易程度是第1小題較易,大部學(xué)生都能拿到分?jǐn)?shù);第2小題中等,起到承上啟下的作用;第3題偏難,不過(guò)往往建立在1、2兩小題的基礎(chǔ)之上。
因此,我們?cè)诮獯饡r(shí)要把第1小題的分?jǐn)?shù)一定拿到,第2小題的分?jǐn)?shù)要力爭(zhēng)拿到,第3小題的分?jǐn)?shù)要爭(zhēng)取得到,這樣就大大提高了獲得中考數(shù)學(xué)高分的可能性。
中考的評(píng)分標(biāo)準(zhǔn)是按照題目所考查的知識(shí)點(diǎn)進(jìn)行評(píng)分,解對(duì)知識(shí)點(diǎn)、抓住得分點(diǎn)就會(huì)得分。因此,對(duì)于數(shù)學(xué)中考?jí)狠S題盡可能解答“靠近”得分點(diǎn),最大限度地發(fā)揮自己的水平,把中考數(shù)學(xué)壓軸題變成高分踏腳石。
聯(lián)系客服