如今,深度學(xué)習(xí)已經(jīng)貫穿于我們的生活,無論是汽車自動駕駛、AI 醫(yī)學(xué)診斷,還是面部、聲音識別技術(shù),無一沒有 AI 的參與。然而,盡管人們早已明了深度學(xué)習(xí)的輸入和輸出,卻對其具體的學(xué)習(xí)過程一無所知。
近日,針對這一問題,奧本大學(xué)(Auburn university)計算機(jī)科學(xué)和軟件工程副教授 Anh Nguyen 對圖像識別的深度學(xué)習(xí)算法進(jìn)行了逐點剖析;無獨有偶,加州大學(xué)歐文分校(UC Irine) 計算機(jī)科學(xué)副教授 Sameer Singh 正在制作歸因圖(attribution maps),以幫助理解為何自然語言算法懂得與你交談,并說出一些涉及種族主義的話。
深度學(xué)習(xí)黑箱
機(jī)器學(xué)習(xí)(machine learning)是人工智能的一種形式,它使用大量的數(shù)據(jù)來訓(xùn)練自己對某些問題形成算法。例如,向機(jī)器提供成千上萬張標(biāo)有“貓”的照片,它就能學(xué)會識別“貓”這一生物。
Nguyen 說,機(jī)器學(xué)習(xí)的想法可以追溯到 20 世紀(jì) 50 年代,但直到最近,計算機(jī)才能夠有效地處理大量數(shù)據(jù),并得出精確結(jié)果。到 20 世紀(jì) 90 年代,機(jī)器學(xué)習(xí)算法僅使用簡單的概念,但很明顯,現(xiàn)實生活中存在各種復(fù)雜的問題,從而需要更復(fù)雜的算法,這就是深度學(xué)習(xí)的意義所在。
與機(jī)器學(xué)習(xí)不同,深度學(xué)習(xí)(deep learning)不需要結(jié)構(gòu)化數(shù)據(jù)作為基礎(chǔ),利用人工神經(jīng)網(wǎng)絡(luò)(artificial neural net),即多個神經(jīng)元一起工作,通過這些“神經(jīng)元”來考慮數(shù)據(jù)并對數(shù)據(jù)進(jìn)行分類。
神經(jīng)網(wǎng)絡(luò)非常擅長圖像識別,當(dāng)向它們提供足夠的數(shù)據(jù)后,他們可以挑出人眼看不見的圖案或差異。利用這一點,深度學(xué)習(xí)可以實現(xiàn)自動駕駛汽車的行人偵查或腫瘤篩查。
但是,當(dāng)出現(xiàn)超出其參數(shù)范圍的輸入時,神經(jīng)網(wǎng)絡(luò)也會崩潰。在特定的,狹窄定義的任務(wù)中,深度學(xué)習(xí)通常優(yōu)于人類,但是一旦神經(jīng)網(wǎng)絡(luò)失效時,往往會導(dǎo)致嚴(yán)重的后果。如果錯誤識別的圖像發(fā)生在腫瘤患者身上或自動駕駛車上時,后果可能是致命的。
但問題是這些系統(tǒng)是如此的密集和復(fù)雜,人類無法理解它們,對人類來說,深度學(xué)習(xí)如同一個科技黑箱。除了令人不安之外,我們無法理解的計算機(jī)程序還可以做出一些不可預(yù)測的事情,并且當(dāng)它們出錯時,很難對其進(jìn)行反向工程或糾正。
正如 Nguyen 所說, “歸根結(jié)底,我們要搞清楚為什么神經(jīng)網(wǎng)絡(luò)的行為是這樣,而不是相反?!?/p>
揭示神經(jīng)網(wǎng)絡(luò)的想法
能徹底搞亂人工智能的數(shù)據(jù)被稱為“對抗性數(shù)據(jù)”,它會導(dǎo)致一個通常可靠的神經(jīng)網(wǎng)絡(luò)犯下奇怪的錯誤。靜態(tài)的、波浪狀的人字紋,以及五顏六色的條紋,可能被 AI 自信地識別為“蜈蚣”或“熊貓”。
不僅如此,一些常見的圖像也會讓深度學(xué)習(xí)人工智能崩潰。把消防車圖片倒過來,AI 就會看到一個大雪橇;放大一輛公共汽車的窗戶,它在 AI 眼中就變成了一個出氣筒。
“令人震驚的是,我們發(fā)現(xiàn)這些網(wǎng)絡(luò)會在某種程度上被這些奇怪的圖案所愚弄,這是我們從未想象過的。”Nguyen 表示。
為了找出原因,Nguyen 創(chuàng)建了一個叫做 DeepVis 的工具來分析神經(jīng)網(wǎng)絡(luò)算法。該工具能夠?qū)⑸钊雽W(xué)習(xí) AI 的完整程序分離開來,并顯示出單個神經(jīng)元正在識別的內(nèi)容。從這里開始,Nguyen 能夠打破深入學(xué)習(xí)AI的連續(xù)工作進(jìn)程,從而理解它是如何一步步達(dá)到最終檢測結(jié)果的。
將識別對象簡單的隨機(jī)旋轉(zhuǎn)幾次,就足以將 AI 的分類精度從 77.5% 降到3%
由于神經(jīng)網(wǎng)絡(luò)這種復(fù)雜性,對其所做的“解剖”對于人工智能開發(fā)人員最有用,提供的大量細(xì)節(jié)可以幫助科學(xué)家們更深入地理解破解黑箱所需的神經(jīng)網(wǎng)絡(luò)訓(xùn)練,就好比醫(yī)生對于腫瘤的研究一樣。
但是,即使使用 DeepVis,黑箱的秘密可能也不會完全打開。神經(jīng)元群的絕對復(fù)雜性可能讓人類難以理解,畢竟它是一個黑箱。
2016 年,來自波士頓大學(xué)和微軟研究院的研究人員為一種算法提供了 300 多萬英文單詞的數(shù)據(jù)集,數(shù)據(jù)從谷歌新聞文章中提取。研究人員重點關(guān)注那些最常用的英文單詞,然后讓算法做完形填空。
“男人(Man)之于程序員(computer programmer),那么女人(woman)之于什么”,機(jī)器通過算法“思考”后,得出答案:“家庭主婦(homemaker)”。
很明顯,AI也會發(fā)出類似于人類社會的性別歧視和種族主義言論。為了找出其中的原因,專注于破解自然語言處理(NLP)算法黑箱并提出深度學(xué)習(xí)思維(deep learning thinking)這一概念的 Sameer Singh,使用了一種叫做歸因圖(attribution map)的工具:將語言插入到文本生成 NLP 算法中,歸因圖將突出顯示某些部分,展示什么在神經(jīng)網(wǎng)絡(luò)內(nèi)部“發(fā)光”——也許是一個特定的字母組合。
Singh 的團(tuán)隊首先使用某些單詞,開發(fā)出特殊的觸發(fā)器,然后,他們按照歸因圖所說的算法最“感興趣”的模板來修改這些單詞,最終的結(jié)果是一連串的文字和半拼寫錯誤,從而引發(fā)了某些看起來像“種族主義”的言論。
“突出顯示的內(nèi)容對模型的預(yù)測或輸出有很大的影響,”Singh 說,利用這些信息,可以使用故意的對抗觸發(fā)器來嘗試發(fā)現(xiàn)問題,并理解深度學(xué)習(xí)算法中的聯(lián)系。這足以讓人們了解人工智能的想法。
雖然歸因圖也有缺點,不同的地圖生成器可能彼此不一致,但是大概的理解可能是我們所能獲得的最好的理解。
AI 黑箱 VS 人類黑箱
事實上,隨著算法變得更加復(fù)雜、更加強(qiáng)大和不透明化,圍繞黑箱的問題也進(jìn)一步深入到哲學(xué)上:當(dāng)我們?nèi)祟愖约旱纳窠?jīng)網(wǎng)絡(luò)仍然神秘時,要求 AI 神經(jīng)網(wǎng)絡(luò)完全透明是公平的嗎?
不得不承認(rèn),人類本身的神經(jīng)網(wǎng)絡(luò)也是一個黑箱。我們雖然知道一些物理結(jié)構(gòu),知道它們是如何工作,但對“思想”和“意識”的確切含義仍不清楚。
接下來我們是否應(yīng)該思考,機(jī)器模仿人腦并繼承其精確、靈活等優(yōu)點的同時,是否也繼承了人性中的偏見?
當(dāng)然,隨著未來科學(xué)家們在深度學(xué)習(xí)領(lǐng)域中不斷取得的突破,由人類創(chuàng)造的 AI 黑箱終將變成“灰色”。
更多精彩盡在學(xué)術(shù)頭條公眾號:SciTouTiao
參考資料:
https://www.freethink.com/articles/deep-learning-ai
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.re-work.co/events/deep-learning-summit-san-francisco-2020/speakers/anh-nguyen
https://dy.163.com/article/DLO1PQGS0512M9G9.html;NTESwebSI=
76F031925F6DE464C143666795C218F1.hz-subscribe-web-docker-cm-online-rpqqn-8gfzd-di16l-678598t4xgp-8081
聯(lián)系客服