高中數(shù)學(xué)必修1-5各章常考知識點全整理!學(xué)渣看完后也能考120+!?
【第一章】
集合和函數(shù)的基本概念
這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“并、補、交、非”也就解決了。
還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。
【第二章】
基本初等函數(shù)
——指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像
函數(shù)的幾大要素和相關(guān)考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關(guān)于這三大函數(shù)的運算公式,多記多用,多做一點練習(xí),基本就沒問題。
函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關(guān)系,這也是??键c。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。
【第三章】
函數(shù)的應(yīng)用
這一章主要考是函數(shù)與方程的結(jié)合,其實就是函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點,要學(xué)會在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這些難點對應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
【第一章】
空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
【第二章】
點、直線、平面之間的位置關(guān)系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。
關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學(xué)表達式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學(xué)即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
【第三章】
直線與方程
這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當(dāng)直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什么難點。
【第四章】
圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關(guān)系來判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。
程序框圖與三種算法語句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語言來理解,否則你會在這樣的題型中栽跟頭。
秦九韶算法是重點,要牢記算法的公式。
統(tǒng)計就是對一堆數(shù)據(jù)的處理,考試也是以計算為主,會從條形圖中計算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個計算問題。
概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。
【第一章】
三角函數(shù)
考試必在這一塊出題,且題量不??!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
【第二章】
平面向量
向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達,是計算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式,分點坐標公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。
【第三章】
三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。
【第一章】
解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
【第二章】
數(shù)列
等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗對其推導(dǎo)、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。
【第三章】
不等式
這一章一般用線性規(guī)劃的形式來考察,這種題通常是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實際問題的限制要求來求最值。
【簡單邏輯用語】
只要弄懂充分條件和必要條件到底指的是前者還是后者、四種命題的真假性關(guān)系、邏輯連接詞及否命題和命題的區(qū)別就不會有問題,考試一般會以選擇題的形式考這一知識點,難度不大。
【圓錐曲線】
這方面的內(nèi)容,一般作會為考試的壓軸題出現(xiàn),盡管提出的問題會很多,但難度不高,只要記住圓錐曲線的表達式就不是事。
【導(dǎo)數(shù)】
整體選修的內(nèi)容考點不多,考試時多為選擇題,或分值不高的填空題。導(dǎo)數(shù)及導(dǎo)數(shù)公式、運算法則、用導(dǎo)數(shù)求極值和最值的方法中,大概率考察用導(dǎo)數(shù)求最值的內(nèi)容,只要會用導(dǎo)數(shù)公式難度就不大。
聯(lián)系客服