【考點】三角形的外接圓與外心.
【專題】動點型.
【分析】首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.
【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如圖延長AD交⊙D于P′,此時AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=6,
∴a的最大值為6..
故答案為6.
【點評】本題考查圓、最值問題、直角三角形性質(zhì)等知識,解題的關(guān)鍵是發(fā)現(xiàn)PA=AB=AC=a,求出點P到點A的最大距離即可解決問題,屬于中考??碱}型
聯(lián)系客服