NetworkX是一個用Python語言開發(fā)的圖論與復(fù)雜網(wǎng)絡(luò)建模工具,內(nèi)置了常用的圖與復(fù)雜網(wǎng)絡(luò)分析算法,可以方便的進(jìn)行復(fù)雜網(wǎng)絡(luò)數(shù)據(jù)分析、仿真建模等工作。networkx支持創(chuàng)建簡單無向圖、有向圖和多重圖(multigraph);內(nèi)置許多標(biāo)準(zhǔn)的圖論算法,節(jié)點可為任意數(shù)據(jù);支持任意的邊值維度,功能豐富,簡單易用。
引入模塊
import networkx as nxprint nx
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.Graph() #建立一個空的無向圖GG.add_node(1) #添加一個節(jié)點1G.add_edge(2,3) #添加一條邊2-3(隱含著添加了兩個節(jié)點2、3)G.add_edge(3,2) #對于無向圖,邊3-2與邊2-3被認(rèn)為是一條邊print "nodes:", G.nodes() #輸出全部的節(jié)點: [1, 2, 3]print "edges:", G.edges() #輸出全部的邊:[(2, 3)]print "number of edges:", G.number_of_edges() #輸出邊的數(shù)量:1nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
輸出
1 2 3 | nodes: [1, 2, 3] edges: [(2, 3)] number of edges: 1 |
例2:
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2) #加點G.add_nodes_from([3,4,5,6]) #加點集合G.add_cycle([1,2,3,4]) #加環(huán)G.add_edge(1,3) G.add_edges_from([(3,5),(3,6),(6,7)]) #加邊集合nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2)G.add_nodes_from([3,4,5,6])G.add_cycle([1,2,3,4])G.add_edge(1,3)G.add_edges_from([(3,5),(3,6),(6,7)])nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
注:有向圖和無向圖可以互相轉(zhuǎn)換,使用函數(shù):
例2,例子中把有向圖轉(zhuǎn)化為無向圖:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_node(1)G.add_node(2)G.add_nodes_from([3,4,5,6])G.add_cycle([1,2,3,4])G.add_edge(1,3)G.add_edges_from([(3,5),(3,6),(6,7)])G = G.to_undirected()nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
注意區(qū)分以下2例
例3-1
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = {'a': 1, 'b': 2, 'c': 3}#road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}road_edges = [('a', 'b'), ('b', 'c')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
例3-2
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()#road_nodes = {'a': 1, 'b': 2, 'c': 3}road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}road_edges = [('a', 'b'), ('b', 'c')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
有向圖和無向圖都可以給邊賦予權(quán)重,用到的方法是add_weighted_edges_from,它接受1個或多個三元組[u,v,w]作為參數(shù),其中u是起點,v是終點,w是權(quán)重。
例1:
#!-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.Graph() #建立一個空的無向圖GG.add_edge(2,3) #添加一條邊2-3(隱含著添加了兩個節(jié)點2、3)G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #對于無向圖,邊3-2與邊2-3被認(rèn)為是一條邊print G.get_edge_data(2, 3)print G.get_edge_data(3, 4)print G.get_edge_data(3, 5)nx.draw(G)plt.savefig("wuxiangtu.png")plt.show()
輸出
{}{'weight': 3.5}{'weight': 7.0}
計算1:求無向圖的任意兩點間的最短路徑
# -*- coding: cp936 -*-import networkx as nximport matplotlib.pyplot as plt #計算1:求無向圖的任意兩點間的最短路徑G = nx.Graph()G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])path = nx.all_pairs_shortest_path(G)print path[1]
計算2:找圖中兩個點的最短路徑
import networkx as nxG=nx.Graph()G.add_nodes_from([1,2,3,4])G.add_edge(1,2)G.add_edge(3,4)try: n=nx.shortest_path_length(G,1,4) print nexcept nx.NetworkXNoPath: print 'No path'
距離
例1:弱連通
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3G = nx.path_graph(4, create_using=nx.DiGraph()) #默認(rèn)生成節(jié)點0 1 2 3,生成有向變0->1,1->2,2->3G.add_path([7, 8, 3]) #生成有向邊:7->8->3for c in nx.weakly_connected_components(G): print cprint [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
執(zhí)行結(jié)果
set([0, 1, 2, 3, 7, 8])[6]
例2:強(qiáng)連通
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as plt#G = nx.path_graph(4, create_using=nx.Graph())#0 1 2 3G = nx.path_graph(4, create_using=nx.DiGraph())G.add_path([3, 8, 1])#for c in nx.strongly_connected_components(G):# print c##print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)]con = nx.strongly_connected_components(G)print conprint type(con)print list(con)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
執(zhí)行結(jié)果
<generator object strongly_connected_components at 0x0000000008AA1D80><type 'generator'>[set([8, 1, 2, 3]), set([0])]
#-*- coding:utf8-*- import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()G.add_path([5, 6, 7, 8])sub_graph = G.subgraph([5, 6, 8])#sub_graph = G.subgraph((5, 6, 8)) #ok 一樣nx.draw(sub_graph)plt.savefig("youxiangtu.png")plt.show()
#原圖
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]G.add_nodes_from(road_nodes)G.add_edges_from(road_edges)nx.draw(G)plt.savefig("youxiangtu.png")plt.show()
圖
#過濾函數(shù)
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()def flt_func_draw(): flt_func = lambda d: d['id'] != 1 return flt_funcroad_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)flt_func = flt_func_draw()part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d))nx.draw(part_G)plt.savefig("youxiangtu.png")plt.show()
圖
#-*- coding:utf8-*-import networkx as nximport matplotlib.pyplot as pltG = nx.DiGraph()road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}}road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')]G.add_nodes_from(road_nodes.iteritems())G.add_edges_from(road_edges)print G.nodes()print G.edges()print "a's pred ", G.pred['a']print "b's pred ", G.pred['b']print "c's pred ", G.pred['c']print "d's pred ", G.pred['d']print "a's succ ", G.succ['a']print "b's succ ", G.succ['b']print "c's succ ", G.succ['c']print "d's succ ", G.succ['d']nx.draw(G)plt.savefig("wuxiangtu.png")plt.draw()
結(jié)果
1 2 3 4 5 6 7 8 9 10 11 12 | [ 'a' , 'c' , 'b' , 'd' ] [( 'a' , 'c' ), ( 'a' , 'b' ), ( 'c' , 'd' )] a's pred {} b 's pred {' a': {}} c 's pred {' a': {}} d 's pred {' c': {}} a 's succ {' c ': {}, ' b': {}} b's succ {} c 's succ {' d': {}} d's succ {} |
聯(lián)系客服