一次函數(shù)
1.、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式
2.、函數(shù)的圖像
一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
3.、描點法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值);
第二步:描點(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點);第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點用平滑曲線連接起來)。
4.、函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。
解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達(dá)兩個變量之間的函數(shù)關(guān)系。
5、一次函數(shù)的定義
一般地,形如
(
,
是常數(shù),且
)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)
時,一次函數(shù)
,又叫做正比例函數(shù)。
⑴一次函數(shù)的解析式的形式是
,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式.
⑵當(dāng)
,
時,
仍是一次函數(shù).
⑶當(dāng)
,
時,它不是一次函數(shù).
⑷正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù).
6、正比例函數(shù)及性質(zhì)
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).
注:正比例函數(shù)一般形式 y=kx (k不為零) ① k不為零 ② x指數(shù)為1 ③ b取零
當(dāng)k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減?。?div style="height:15px;">
(1) 解析式:y=kx(k是常數(shù),k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
7、一次函數(shù)及性質(zhì)
一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).
注:一次函數(shù)一般形式 y=kx+b (k不為零) ① k不為零 ②x指數(shù)為1 ③ b取任意實數(shù)
一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-
,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數(shù),k
0) (2)必過點:(0,b)和(-
,0)
(3)走向: k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限
b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限
直線經(jīng)過第一、二、三象限
直線經(jīng)過第一、三、四象限
直線經(jīng)過第一、二、四象限
直線經(jīng)過第二、三、四象限
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.
(6)圖像的平移: 當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位;
當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位.
一次
函數(shù)
,
符號
圖象
性質(zhì)
隨
的增大而增大
隨
的增大而減小
8、一次函數(shù)y=kx+b的圖象的畫法.
根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點:(0,b),
.即橫坐標(biāo)或縱坐標(biāo)為0的點.
b>0
b<0
b=0
k>0
經(jīng)過第一、二、三象限
經(jīng)過第一、三、四象限
經(jīng)過第一、三象限
圖象從左到右上升,y隨x的增大而增大
k<0
經(jīng)過第一、二、四象限
經(jīng)過第二、三、四象限
經(jīng)過第二、四象限
圖象從左到右下降,y隨x的增大而減小
9、正比例函數(shù)與一次函數(shù)之間的關(guān)系
一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)
10、正比例函數(shù)和一次函數(shù)及性質(zhì)
正比例函數(shù)
一次函數(shù)
概 念
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù)
一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時,是y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).
自變量
范 圍
X為全體實數(shù)
圖 象
一條直線
必過點
(0,0)、(1,k)
(0,b)和(-
,0)
走 向
k>0時,直線經(jīng)過一、三象限;
k<0時,直線經(jīng)過二、四象限
k>0,b>0,直線經(jīng)過第一、二、三象限
k>0,b<0直線經(jīng)過第一、三、四象限
k<0,b>0直線經(jīng)過第一、二、四象限
k<0,b<0直線經(jīng)過第二、三、四象限
增減性
k>0,y隨x的增大而增大;(從左向右上升)
k<0,y隨x的增大而減小。(從左向右下降)
傾斜度
|k|越大,越接近y軸;|k|越小,越接近x軸
圖像的
平 移
b>0時,將直線y=kx的圖象向上平移
個單位;
b<0時,將直線y=kx的圖象向下平移
個單位.
11、直線
(
)與
(
)的位置關(guān)系
(1)兩直線平行
且
(2)兩直線相交
(3)兩直線重合
且
(4)兩直線垂直
12、用待定系數(shù)法確定函數(shù)解析式的一般步驟:
(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程;
(3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式.