中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
dython是什么?

大家都知道Python,但是應(yīng)該很少有人聽過dython,dython是python中的一款數(shù)據(jù)建模庫。盡管已經(jīng)有了scikit-learn、statsmodels、seaborn等非常優(yōu)秀的數(shù)據(jù)建模庫,但實(shí)際數(shù)據(jù)分析過程中常用到的一些功能場景仍然需要編寫數(shù)十行以上的代碼才能實(shí)現(xiàn)。

而今天要給大家推薦的dython就是一款集成了諸多實(shí)用功能的數(shù)據(jù)建模工具庫,幫助我們更加高效地完成數(shù)據(jù)分析過程中的諸多任務(wù):

通過下面兩種方式均可完成對(duì)dython的安裝:

pip install dython

或:

conda install -c conda-forge dython

dython中目前根據(jù)功能分類劃分為以下幾個(gè)子模塊:

  • 「data_utils」

data_utils子模塊集成了一些基礎(chǔ)性的數(shù)據(jù)探索性分析相關(guān)的API,如identify_columns_with_na()可用于快速檢查數(shù)據(jù)集中的缺失值情況:

>> df = pd.DataFrame({'col1': ['a', np.nan, 'a''a'], 'col2': [3, np.nan, 2, np.nan], 'col3': [1.2.3.4.]})
>> identify_columns_with_na(df)
  column  na_count
1   col2         2
0   col1         1

identify_columns_by_type()可快速選擇數(shù)據(jù)集中具有指定數(shù)據(jù)類型的字段:

>> df = pd.DataFrame({'col1': ['a''b''c''a'], 'col2': [3421], 'col3': [1.2.3.4.]})
>> identify_columns_by_type(df, include=['int64''float64'])
['col2''col3']

one_hot_encode()可快速對(duì)數(shù)組進(jìn)行「獨(dú)熱編碼」

>> one_hot_encode([1,0,5])
[[0. 1. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1.]]

split_hist()則可以快速繪制分組直方圖,幫助用戶快速探索數(shù)據(jù)集特征分布:

import pandas as pd
from sklearn import datasets
from dython.data_utils import split_hist

# Load data and convert to DataFrame
data = datasets.load_breast_cancer()
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df['malignant'] = [not bool(x) for x in data.target]

# Plot histogram
split_hist(df, 'mean radius', split_by='malignant', bins=20, figsize=(15,7))
  • 「nominal」

nominal子模塊包含了一些進(jìn)階的特征相關(guān)性度量功能,例如其中的associations()可以自適應(yīng)由連續(xù)型和類別型特征混合的數(shù)據(jù)集,并自動(dòng)計(jì)算出相應(yīng)的Pearson、Cramer's V、Theil's U、條件熵等多樣化的系數(shù);cluster_correlations()可以繪制出基于層次聚類的相關(guān)系數(shù)矩陣圖等實(shí)用功能:

  • 「model_utils」

model_utils子模塊包含了諸多對(duì)機(jī)器學(xué)習(xí)模型進(jìn)行性能評(píng)估的工具,如ks_abc()

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from dython.model_utils import ks_abc

# Load and split data
data = datasets.load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=.5, random_state=0)

# Train model and predict
model = LogisticRegression(solver='liblinear')
model.fit(X_train, y_train)
y_pred = model.predict_proba(X_test)

# Perform KS test and compute area between curves
ks_abc(y_test, y_pred[:,1])

metric_graph()

import numpy as np
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from dython.model_utils import metric_graph

# Load data
iris = datasets.load_iris()
X = iris.data
y = label_binarize(iris.target, classes=[012])

# Add noisy features
random_state = np.random.RandomState(4)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# Train a model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=0))

# Predict
y_score = classifier.fit(X_train, y_train).predict_proba(X_test)

# Plot ROC graphs
metric_graph(y_test, y_score, 'pr', class_names=iris.target_names)
import numpy as np
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from dython.model_utils import metric_graph

# Load data
iris = datasets.load_iris()
X = iris.data
y = label_binarize(iris.target, classes=[012])

# Add noisy features
random_state = np.random.RandomState(4)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# Train a model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=0))

# Predict
y_score = classifier.fit(X_train, y_train).predict_proba(X_test)

# Plot ROC graphs
metric_graph(y_test, y_score, 'roc', class_names=iris.target_names)
  • 「sampling」

sampling子模塊則包含了boltzmann_sampling()weighted_sampling()兩種數(shù)據(jù)采樣方法,簡化數(shù)據(jù)建模流程。

dython作為一個(gè)處于快速開發(fā)迭代過程的Python庫,陸續(xù)會(huì)有更多的實(shí)用功能引入,感興趣的朋友們可以前往https://github.com/shakedzy/dython查看更多內(nèi)容或?qū)Υ隧?xiàng)目保持關(guān)注。


以上就是本文的全部內(nèi)容,歡迎在評(píng)論區(qū)與我進(jìn)行討論~

- EOF -

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
機(jī)器學(xué)習(xí)之分類算法
為什么要用交叉驗(yàn)證
Python機(jī)器學(xué)習(xí)筆記:sklearn庫的學(xué)習(xí)
【機(jī)器學(xué)習(xí)】機(jī)器學(xué)習(xí)神器Scikit-Learn保姆級(jí)入門教程
21句話入門機(jī)器學(xué)習(xí)
sklearn庫的學(xué)習(xí)
更多類似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服