男性不育
翻譯:塔拉(遼寧丹東中心醫(yī)院)
審校:王若光(若光醫(yī)學研究中心)
文獻提供:譚灝文(安吉康爾科技(深圳)科技有限公司)
據(jù)估計,全球8-12%的夫婦患有不孕癥,約50%的夫婦中男性因素是主要原因或促成因素。造成男性因素不育的原因多種多樣,但可能與先天性、后天性或特發(fā)性因素有關,這些因素會損害精子產(chǎn)生。許多健康狀況都會影響男性生育能力,這就強調了需要對患者進行全面評估,以確定可治療或可逆的生活方式因素或醫(yī)療狀況。盡管精液分析仍然是評估男性不育的基石,為調查精子的質量和功能,改善診斷和管理,先進的診斷測試已經(jīng)被開發(fā)出來。輔助生殖技術的使用也大大提高了不育夫婦生親生子女的能力。本次研討會旨在全面概述男性不育患者的評估和管理,以及目前的爭議和未來的努力。
簡介
世界衛(wèi)生組織將不孕不育定義為在至少12個月的正常、無保護的性行為后不能懷孕[1]。不孕不育是世界范圍內的一個主要健康問題,估計影響到8%-12%的育齡夫婦[2]。一項全球疾病負擔調查報告稱,1990至2017年間,不孕不育的年齡患病率在婦女中每年增加0.370%,在男性中增加0.291%[3]。不孕不育造成巨大的心理和社會痛苦[4.5],并給患者和醫(yī)療保健系統(tǒng)帶來相當大的經(jīng)濟負擔[6]。在一項對384419名丹麥男性進行的前瞻性研究中,Glazer和他的同事[7]們報告說,患有男性因素不育癥的男性比有生育能力的男性死亡風險更高。Ventimiglia和他的同事[8]表明,男性生殖健康受損(包括較差的精液參數(shù)和較低的睪酮水平)與較高的Charlson合并癥指數(shù)有關,Charlson合并癥指數(shù)與一般健康狀況下降的代表[9]。嚴重的男性不育癥也與更高的癌癥發(fā)病率有關[10]。因此,早期發(fā)現(xiàn)男性低生育能力,并識別和糾正不僅能影響生育能力,而且也能影響男性總體健康和良好的醫(yī)療狀況提供了機會[11]。 越來越多的證據(jù)表明,懷孕時的父親健康可以通過表觀遺傳修飾的跨代傳遞,影響后代的代謝健康和生殖潛力。一項針對744名男性不育癥患者的研究顯示,在符合糖尿病前期標準的男性中,15.4%的人患性腺功能減退、精子DNA碎片化程度較高以及非梗阻性無精子癥的風險增加[14]。少精子癥男性比正常精子癥男性更有可能出現(xiàn)代謝綜合征[15]。因此,重要的是要超越精液分析,將男性不育視為一種與新陳代謝受損相關并促進代謝狀態(tài)的疾病。
檢索策略和選擇標準
應用計算機檢索Scopus和PubMed關于男性不育的相關文章,檢索詞為“男性不育癥”,并結合“流行病學”、“病因學”、“病理生理學”、“調查”、“無精子癥”、“少弱精子癥”、“弱精子癥”、“精索靜脈曲張”、“遺傳異?!薄ⅰ半[睪癥”、“睪丸癌”、“梗阻”等詞進行檢索,檢索詞為“男性不育癥”、“病因”、“病理生理學”、“調查”、“無精子癥”、“少弱精子癥”、“精索靜脈曲張”、“遺傳異常”、“隱睪癥”、“睪丸癌”、“梗阻”。“活性氧”、“基因檢測”、“成像”、“管理”、“治療”、“抗氧化療法”、“精索靜脈曲張切除術”、“ART”或“組學”。我們選擇了大多數(shù)發(fā)表于過去5年的文章,并高度引用了較老的出版物。我們還回顧了檢索到的文章的參考列表,以及最近5年內發(fā)表的、在最初搜索中沒有檢索到的討論男性不育癥的精選文章。引用高度引用的評論和書籍章節(jié),為讀者提供超出本研討會所能容納的更多信息和參考。
在在20%-30%的病例中,不孕不育的原因完全是男性造成的,另外20%的病例中男性原因也起到了推波助瀾的作用[16.17]。1992年,Carlsen和他的同事進行的一項大型薈萃分析證實,精子數(shù)量在60年間下降了50%[18]。隨后,眾多研究顯示全球精子數(shù)量也出現(xiàn)了類似的下降[19.20],盡管一些研究對這一說法提出了異議[21.22]。Levine和他的同事們的一項系統(tǒng)綜述[23]報告,1973年至2011年間精子數(shù)量下降了50-60%。 男性不育癥的原因很多,但在大多數(shù)情況下人們對此知之甚少[24-26]。雖然有各種診斷方法可用,但它們的解釋并不精確,而且往往具有主觀性[27]。胞質內精子注射使精液質量非常差的妊娠成為可能,例如,使用手術獲取的睪丸精子治療無精子癥[28]。使用令人興奮的干細胞和體外精子成熟的新療法仍在試驗階段。本次研討會旨在回顧我們目前對這些問題的理解,并提供實踐指導方針,以便對不育癥的男性進行個性化和優(yōu)化管理。病因
專題1:男性不育的原因和危險因素先天性因素無精癥
先天性輸精管缺如
隱睪
Y染色體微缺失
染色體或遺傳異常
Klinefelter綜合征及其變異
(47,XXY;46,XY/47,XXY嵌合體)
Kallmann綜合征
羅伯遜易位
輕度雄激素不敏感綜合征
遺傳內分泌疾病
先天性梗阻
獲得性因素精索靜脈曲張
睪丸外傷
睪丸扭轉
生殖細胞腫瘤
獲得性性腺激素減退
復發(fā)性泌尿生殖道感染(前列腺炎、前列腺囊炎)
炎癥后條件(附睪炎、流行性腮腺炎、睪丸炎)
泌尿生殖道梗阻
外源性因素(如化療,藥物,放療,發(fā)熱)
全身性疾病(如肝硬化、腎功能衰竭)
抗精子抗體
可構成睪丸血管化的手術
性功能障礙(勃起或射精功能障礙)
特發(fā)性危險因素吸煙
酗酒
娛樂藥物
肥胖
心理壓力
高齡父親
飲食因素
環(huán)境或職業(yè)接觸毒素
多種原因和危險因素導致男性不育發(fā)病率上升[29-30],可分為先天性、獲得性和特發(fā)性(專題1)。已知的男性不育的主要遺傳原因是先天性雙側輸精管缺如并伴有囊性纖維化基因突變,Kallmann綜合征[31],染色體異常導致睪丸功能惡化,以及Y染色體微缺失導致孤立的生精缺陷。在獲得性因素中,精索靜脈曲張是男性不育最常見和可糾正的原因,患病率為40%[30.32-34]。約30-50%的男性不育病例是特發(fā)性的,沒有可明顯的病因或導致女性不育的原因[35.36]。男性氧化應激不育涉及精液特性和氧化應激的改變,影響約3700萬男性特發(fā)性不孕癥[37]。環(huán)境或職業(yè)暴露于有毒化學物質[38]和各種生活方式因素(如吸煙[39.40],飲酒[41]、娛樂吸毒[42-44]、肥胖[45.46]、以及心理壓力都是導致男性不育的潛在危險因素。評估
建議對規(guī)律且無保護性行為至少12個月后沒有自然懷孕的夫婦進行不孕不育評估和治療,對于女性伴侶年齡超過35歲的夫婦[49.50],建議在6個月后進行不孕不育評估和治療。12個月前的評估和治療可以根據(jù)病史和體檢來考慮,對未來生育能力有顧慮的男性也可以進行評估。美國生殖醫(yī)學協(xié)會(ASRM)和歐洲泌尿外科協(xié)會(EAU)都建議進行包括生殖史和至少一次精液分析在內的初步評估[30.49],美國泌尿學會(AUA)堅持行兩次精液分析[50]。如果最初的評估結果顯示異常,建議轉診到生殖專家進行全面的評估,包括體檢和獲得完整的病史。根據(jù)結果,可能會推薦進一步的男科評估和程序。病史
專題2:病史在評估男性不育癥方面的重要屬性
不孕史
不孕持續(xù)時間
以前的懷孕和結局(原發(fā)性vs繼發(fā)性不孕癥)
伴侶生育史
以前的生育調查和治療
性史
性欲
勃起功能障礙
射精功能障礙
潤滑劑類型
性交的頻率和時間
性傳播疾病
病史
隱睪癥
青春期時間
嗅覺缺失
睪丸扭轉史
睪丸外傷史
糖尿病
神經(jīng)系統(tǒng)疾病(脊髓損傷,多發(fā)性硬化癥)
感染(泌尿系統(tǒng)感染、附睪炎或前列腺炎
肺結核、腮腺炎或睪丸炎、最近的發(fā)熱?。?div style="height:15px;">
腎病
癌癥
手術史
睪丸固定術
腹膜后或盆腔手術
疝修補術
輸精管切除術
膀胱頸或前列腺手術
? 性激素暴露
藥物(內分泌調節(jié)劑、抗高血壓藥,抗生素、抗精神病藥)
環(huán)境(殺蟲劑、重金屬)
化療或放療
生活方式(肥胖、吸煙、吸煙、娛樂性毒品,合成代謝類固醇)
家族史
不孕
囊性纖維化
雄激素受體缺乏癥
男性不育癥的成功診斷可能具有挑戰(zhàn)性,因為受孕過程涉及多個器官,需要對兩個人進行評估。評估不孕癥的第一步是獲得完整的病史(專題2)。不孕癥可分為原發(fā)性不孕癥(即無生育史)或繼發(fā)性不孕癥(即既往有生育史,目前不育) [1]。雖然這種區(qū)分可以縮小鑒別診斷,但被歸類為原發(fā)性或繼發(fā)性不孕癥的男性應該以同樣的方式進行評估[50]。
各種兒童疾病(如隱睪癥、青春期后腮腺炎、睪丸扭轉或創(chuàng)傷)可導致睪丸萎縮或精液質量下降[51-53]。男性泌尿生殖道感染(前列腺炎、尿道炎、附睪炎和睪丸炎)可能導致男性不育[30]。在一項對4000多名不育癥男性的研究中,男性泌尿生殖道感染的患病率高達35%[54]。一項對1689名男性的橫斷面研究顯示,20%的原發(fā)不育癥男性有無癥狀的精液感染,這與精子密度受損有關[55]。前列腺炎是由大腸桿菌引起的一種常見的泌尿生殖系統(tǒng)疾病,它可以對精子的各種參數(shù)產(chǎn)生有害影響[56]。在35歲以下的性活躍男性中,沙眼衣原體和淋球菌是引起附睪炎的最常見病原體。大腸桿菌是35歲以上男性不育癥的主要病原體。雖然不建議對急性附睪炎或前列腺炎患者進行精液分析,但慢性附睪炎或前列腺炎患者可能出現(xiàn)白細胞精子癥(>1×10?白細胞/毫升),這是一種炎癥標志[30],可以通過精液中的過氧化物酶檢測來確認[57]。 生活方式因素,如吸煙、飲酒、娛樂性吸毒(如可卡因、阿片類毒品、大麻和合成代謝類固醇)以及肥胖也與男性不育相關[40-42]。一項涉及20項研究中5865名男性的大型薈萃分析顯示,中度和重度吸煙者的精液質量惡化[40]。同樣,一項對15項橫斷面研究的薈萃分析揭示了飲酒與精子參數(shù)之間的負相關[41]。大麻是最常用的娛樂藥物,通過抑制下丘腦-垂體-性腺軸、精子產(chǎn)生和精子功能,對男性生育能力產(chǎn)生負面影響[58]。隨著全球肥胖率的持續(xù)上升,肥胖和男性不育之間的關系已經(jīng)得到了廣泛的研究[12]。肥胖引起的內分泌改變導致睪酮外周轉化為雌激素,這與精子濃度降低有關[59]。在肥胖癥的亞群中,代謝性不健康肥胖(即伴有代謝異常,如糖尿病、高血壓、血脂異常、胰島素抵抗)被認為是勃起功能障礙的危險因素,而男性勃起功能障礙和代謝性健康肥胖癥(即沒有代謝和心血管疾病的證據(jù))的組合代表著未來不良代謝后果的早期標志[60]。 夫婦的性行為,包括性交的時間、勃起和射精功能,都應該進行評估。應使用排卵跟蹤方法,以確保夫婦有效地計時性交。建議在排卵前后每48小時進行一次性交,以最大限度地增加受精的機會[61]。影響不孕不育男性的最常見的性功能障礙是性欲低下和性滿足缺失(快感、積極感覺和性高潮) [62]。六分之一的不育癥患者有勃起功能障礙或早泄,或兩者同時存在[63]。
數(shù)據(jù)摘自世衛(wèi)組織手冊。ND=未定義。*可能基于麥克勞德的研究73??捎丝诘?平均值。?任意值。§值未定義,但嚴格的標準和體外受精數(shù)據(jù)建議截止值為14%。
表:1980年至2010年世界衛(wèi)生組織《檢驗實驗室手冊》前五版精液參數(shù)正常值的演變情況,
以及處理人類精液和精子-宮頸粘液的相互作用。
性功能障礙和男性不育的心理影響可能是成功生育的重要障礙,應該在臨床評估中進行篩查。此外,許多夫婦使用陰道潤滑劑,但這些潤滑劑可能會殺死精子[64.65]。植物油、生蛋清和有利于生育的潤滑劑(如美國華盛頓州斯波坎市的Pre-Seed、ING Fertility)的殺精效果最小,但夫婦仍應意識到適量使用這些潤滑劑[66-68]。
精液分析
世界衛(wèi)生組織建議將常規(guī)精液分析作為評估男性生育潛力的第一步。世界衛(wèi)組織《人類精液和精子-宮頸粘液相互作用檢驗和處理實驗室手冊》自1980[69-72]年出版,最新的手冊于2010年出版[57]。精液參數(shù)的推薦臨界值多年來發(fā)生了巨大變化(表),但與精液質量相關的命名法仍未改變(專題3)。世界衛(wèi)生組織手冊最新版本[57]中描述的參考下限是通過對來自世界各地的1953名有生育能力的男子精液參數(shù)的統(tǒng)計分析得出的[54]。然而,這些參考限值被批評為沒有考慮女性因素,個體間存在高度生物學差異,以及缺乏具有代表性的種族群體的數(shù)據(jù)[75-77]。因此,標準的精液分析在確定男性生育潛力或預測生殖成功方面的準確性有限。事實上,精液樣本使用世界衛(wèi)生組織2010年參考值來解釋精液分析被認為是正常的,如果使用1999年的手冊就會被認為是異常的[78]。Ombelet和他的同事使用受試者操作特性曲線分析來確定單個精子參數(shù)和組合精子參數(shù)的診斷潛力和臨界值[79]。他們的前瞻性研究顯示,單個精子參數(shù)對于區(qū)分生育能力強的男性和低生育能力的男性幾乎沒有臨床價值,并表明使用多種精子參數(shù)組合來預測男性的生育狀況是很重要的[79]。標準精液分析的另一個問題是,并不是所有的實驗室都嚴格遵守世界衛(wèi)組織的手冊方法。在美國,只有不到60%的實驗室符合世界衛(wèi)生組織的手冊指南,在英國,只有不到5%的實驗室符合世界衛(wèi)生組織的手冊指南[80-81]。至關重要的是,所有實驗室都要嚴格遵守世界衛(wèi)生組織手冊指南,以提供可靠和可比較的結果。已經(jīng)引進了幾個半自動和全自動計算機輔助精子分析系統(tǒng)。盡管計算機輔助精子分析系統(tǒng)在準確評估精子形態(tài)方面存在缺陷[82.83],但在許多嚴格遵守質量控制協(xié)議以準確量化精液參數(shù)的男科學和體外受精診所中,計算機輔助精子分析系統(tǒng)被廣泛使用[84]。系統(tǒng)比如臺中市邦瑞生物公司,臺灣)采用人工智能簡化精液分析。Agarwal和他的同事對精液分析的前瞻性研究結果表明[85],該設備是一種可靠的診斷工具,提供了世界衛(wèi)生組織第五版指南定義的臨床可接受的結果。
在家收集精液樣本是精液分析的另一個進步[86]。支持在家中測試精子的技術為那些在陌生環(huán)境中提供精液樣本感到不舒服的男性提供了一個潛在的解決方案[87.88]。家庭精子檢測系統(tǒng)主要是基于抗體反應,微流體學,或智能手機技術。這些測定精子濃度的儀器的準確度在95%到98%之間,這使得它們成為一種實用和經(jīng)濟的方法來進行男性不育的初步篩查[89]。體格檢查
體格檢查是評估男性不育癥的一個關鍵部分,應該包括身體狀況、第二性征和生殖器的評估?;加袃确置诩膊〉幕颊?例如,低血清睪酮、Klinefelter綜合征、高催乳素血癥)??赡軙霈F(xiàn)生殖腺發(fā)育不全的特征、體毛減少(與Tanner V期相比)、肥胖或女性乳房發(fā)育癥[90.91]。生殖器檢查應該從陰莖開始,仔細評估陰莖彎曲、斑塊、尿道外翻或尿道下裂,所有這些都會損害精液在陰道穹窿的沉積。應該檢查睪丸的存在、大小和一致性。睪丸大小應使用Prader睪丸計或卡尺(正常體積為20毫升或4×3厘米)進行評估[92]。當患者的身體習性或陰囊解剖(鞘膜積水、附睪擴張或腹股溝睪丸)可能使Prader睪丸儀測量睪丸不可靠時,陰囊超聲檢查是有用的[93]。應該排除睪丸腫塊,因為有不育癥的男性患睪丸腫瘤的風險更高[94]。應該觸診附睪,以評估是否有可能提示遠端梗阻的增大。附睪發(fā)育不良伴有單側或雙側未觸及的輸精管,與血管發(fā)育不全相一致,也可能與遺傳或腎臟異常有關。精索應該在仰臥和站立位置進行評估,以便發(fā)現(xiàn)精索靜脈曲張。精索靜脈曲張按大小分級:1級僅通過Valsalva動作可觸及,2級可在沒有Valsalva動作的情況下觸及,3級靜脈曲張可見[95]。雖然不育的年輕男性不常規(guī)進行直腸指檢,但射精量低的男性可以進行直腸指診。應該評估前列腺的大小和一致性。中線囊腫或突出的精囊可能表明射精管阻塞[92]。生殖內分泌評估
專題4:男性不育患者內分泌激素評估的臨床解釋
性腺功能減退癥
卵泡刺激素、黃體生成素和睪酮濃度降低
睪丸功能衰竭(少弱精子癥或非梗阻性無精子癥)
卵泡刺激素和黃體生成素濃度升高,睪酮濃度降低或正常
無定論:精子發(fā)生正常或有缺陷
精子發(fā)生正常濃度的促卵泡激素,黃體生成激素和睪酮
高催乳素血癥
催乳素濃度升高,睪酮濃度正常或降低
生殖內分泌激素評估是治療男性不育的重要工具。許多臨床醫(yī)生認為激素評估是對每一位男性不育患者進行常規(guī)檢查的一部分[96],盡管國際社會建議限制對特定的患者群體使用激素,包括精子濃度低于10×10?/mL或性功能受損的男性,或者懷疑有內分泌疾病的患者[49.50]。推薦的基礎激素評估應包括卵泡刺激素和總睪酮的分析(專題4)。如果發(fā)現(xiàn)總睪酮濃度較低,建議進行更徹底的內分泌評估。這一過程包括復查總睪酮和增加黃體生成素測定以鑒別原發(fā)性和繼發(fā)性性腺功能減退。在這種情況下,催乳素分析也被推薦[49.50]。ASRM指南用于男性不育癥激素評估的有效性在預測性腺功能減退方面受到了挑戰(zhàn)[97]。Ventimiglia及其同事[97]的一項回顧性研究顯示,該指南的預測價值較低,總體準確率為58%,敏感度為75%,特異度為39%。對于睪酮濃度的下限沒有普遍的共識。ASRM采用小于300 ng/dL作為診斷性腺功能減退的臨界值,EAU建議230 ng/dL(8nmol/L) [98.99]為診斷性腺功能減退的臨界值。在性激素結合球蛋白升高的情況下(例如,75歲以上的男性、甲狀腺疾病或糖尿病),僅測量總睪酮濃度是不夠的。在這種情況下,建議測量游離睪酮。盡管反向平衡透析是測量游離睪酮的黃金標準,但它價格昂貴,技術上具有挑戰(zhàn)性。使用計算出的游離睪酮來評估男性性腺功能減退可能是一種更準確的臨床評估方法[99.100]。雖然催乳素在女性生育中的作用已經(jīng)確定,但它在男性不育癥中的作用尚不清楚,盡管輕度升高并不重要。嚴重的高催乳素血癥可能與總睪酮濃度降低有關,從而影響精子發(fā)生和男性的性功能[101]。高催乳素血癥在40%的病例中是由催乳素瘤引起的[102]。卵泡刺激素通常與精子發(fā)生呈負相關,因此在精原細胞缺失或減少的病例中回看到卵泡刺激素會升高[103.104]。然而,在某些精母細胞或精子細胞水平的生精停止病例中,卵泡刺激素、黃體生成素和睪酮的濃度可能是正常的,這限制了內分泌評估在非梗阻性無精子癥患者中的預測價值。基因檢測
約15%的男性不育與遺傳異常有關[105]。最近對男性不育基因的系統(tǒng)回顧和臨床有效性評估顯示,總共有78個基因與92個男性不育表型有關[106]。已經(jīng)發(fā)現(xiàn)了幾個與精子發(fā)生有關的基因和基因突變[26.107]。有遺傳異常的男性通常表現(xiàn)為精子發(fā)生缺陷,導致嚴重的少精子癥或無精子癥,并增加非整倍體[108]。胚胎中的基因突變可能會導致反復的胞漿內單精子注射失敗,反復流產(chǎn),或者父系遺傳缺陷的垂直傳遞。因此,在卵泡胞漿內單精子注射之前,識別基因缺陷對于診斷和正確的咨詢至關重要?;蛉毕莸拇怪眰鞑タ梢酝ㄟ^植入前的基因檢測和移植基因健康的胚胎來預防[109]?;驒z測對于預測取精成功也很重要[109]。核型分析(也稱為染色體分析)是檢測染色體數(shù)目缺陷或結構缺陷。核型異常是最常見的遺傳缺陷類型,在無精子癥中患病率為12-15%,在嚴重少精子癥中為5%,在正常精液中不到1%[110-112]。最常見的核型缺陷是Klinefelter綜合征(又稱47,XXY),其次是易位、倒位和缺失。不同的專業(yè)協(xié)會一致建議對無精子癥或嚴重少精子癥(精子數(shù)<5×10?/mL)的男性進行核型分析[113-115]。然而,EAU將他們的指南建議擴展到包括精子數(shù)低于10×10~6/ml的男性[30.35]。EAU還建議,如果有反復自然流產(chǎn)、畸形或智力殘疾的家族病史[30.35],無論精子濃度如何,都要進行核型分析[30]。這一建議[35]在對1168名男性的隊列研究中得到了回顧性驗證,研究發(fā)現(xiàn),建議的閾值具有中等的敏感性(80%),但特異性(37%)和區(qū)分度(59%)較低[116]。因此,主要根據(jù)精子計數(shù)的EAU指南的使用可能導致不必要的核型分析,核型分析是一項昂貴而費力的檢測。Y染色體微缺失分析適用于精子數(shù)低于5×10?/ml的無精子癥或少精子癥患者[117]。Kohn和他的同事的薈萃分析顯示,大多數(shù)Y染色體微缺失發(fā)生在精子數(shù)量低于1×10?/mL[118]的男性中。最新的EAU指南建議,如果精子濃度低于5×10?/mL,則進行Y染色體微缺失檢測,并強制對精子濃度低于1×10?/ml的Y染色體微缺失進行檢測[30]。Y染色體微缺失會影響Y染色體長臂上的無精癥因子a、b或c。雖然無精子癥c因子缺失的男性可以從睪丸中提取精子,但a或b因子缺失的無精子癥患者預后非常差,在這種情況下不建議提取精子。重要的是,Y染色體微缺失可能會遺傳給男性后代,因此建議在胞漿內精子注射之對夫婦進行專業(yè)的咨詢[119.120]。大多數(shù)囊性纖維化患者先天性雙側輸精管缺失,大約三分之二患有這種疾病的男性有CFTR突變,沒有任何其他囊性纖維化表現(xiàn)[121.122]。對于輸精管結構異常的男性,建議對雙方進行CFTR突變檢測,其中包含最少的公共點突變和5T等位基因[30]。影像檢查
在某些情況下,對男性不育癥的全面評估常需要涉及影像學方法。陰囊超聲檢查因其無創(chuàng)性、安全性和低成本而成為首選的影像檢查手段。它提供了有關睪丸大小和體積、睪丸回聲的詳細信息,血流、精索靜脈曲張和附睪解剖。陰囊超聲檢查不適用于亞臨床精索靜脈曲張的診斷,體檢結果正常的男性可以避免[123]超聲檢查。懷疑近端生殖道梗阻的患者(根據(jù)病史、體檢和精液分析)需要經(jīng)直腸超聲檢查精囊擴張、前列腺中線囊腫和射精管擴張[93.124]。經(jīng)直腸超聲可以與精囊抽吸結合使用,以更準確地診斷射精管梗阻[124]。如果需要對泌尿生殖道進行更詳細的成像,可以做MRI。對于不育、性腺功能低下和催乳素升高的男性,頭顱MRI可以診斷出垂體病變(最常見的是催乳素瘤),催乳素瘤是高催乳素血癥和性腺功能低下的潛在原因[125]。輸精管造影術是一種侵入性成像手段[126],用于確定輸精管或射精管的通暢性或梗阻情況,通常僅作為最終重建手術的一部分進行。在許多情況下,僅憑體檢就能讓男性不育專家作出診斷,但上述影像學方法可用于未確診病例,或在重建顯微外科手術中使用[92]。精子功能檢測
專題5:精子DNA片段測試的臨床適應癥
臨床精索靜脈曲張
對于常規(guī)精液參數(shù)正常的2級或3級精索靜脈曲張患者,建議進行精子DNA片段檢測建議對1級患者進行精子DNA碎片檢測
對于精液常規(guī)參數(shù)有臨界值或異常的1級精索靜脈曲張患者,建議進行精子DNA片段檢測
不明原因不孕或宮內受精失敗或反復妊娠損失
對于不孕和反復妊娠丟失的夫婦,或在子宮內授精之前,應進行精子DNA碎片檢測
早期體外受精或卵胞漿內單精子注射可能是不孕癥和復發(fā)性流產(chǎn)或宮內受精失敗夫婦的另一種治療方法
體外受精失敗,或卵胞漿內精子注射失敗,或兩者都有
精子DNA碎片測試適用于反復失敗的輔助生殖患者
對于少精子癥、精子DNA碎片化程度高和反復發(fā)生體外受精失敗的男性,使用睪丸精子而不是射精精子可能是有益的。
臨界異常(或正常)精液參數(shù)與危險因素
精子DNA片段化檢測應提供給生活方式可改變的男性不育危險因素患者
地評傳統(tǒng)的精液參數(shù)不能檢測出與精子功能相關的缺陷[127],所以精子功能測試已經(jīng)被開發(fā)出來以加強精液分析(圖1)。在體外受精和卵胞漿內單精子注射出現(xiàn)后,精子功能測試的臨床重要性開始顯現(xiàn)[129-131]。在傳統(tǒng)的體外受精中,精子-透明帶相互作用缺陷是受精失敗的主要原因。然而,在當前的胞漿內單精子注射時代,半透明帶或頂體功能檢測不再用于臨床實踐,因為胞質內單精子注射繞過了精子的穿透能力。因此,人們更加重視用精子DNA片段化檢測來評估精子染色質的質量[132-134]。精子DNA片段分析可能比傳統(tǒng)的精液參數(shù)更全面地評估總體生育狀況[135]。
圖1:男性不育的實驗室評估
標準精液分析包括宏觀和微觀參數(shù)分析。先進的精子功能測試包括使用不同的技術測定活性氧、精子DNA碎片、頂體反應和MMP。FITC-PSA=異硫氰酸熒光素標記的豌豆凝集素.MiOXSYS=男性不孕癥氧化系統(tǒng)。MMP=線粒體膜potential.ORP=氧化-還原潛力。ROS=活性氧。SCD=精子染色質分散試驗。精子染色質結構分析。末端脫氧核苷酸轉移酶介導的dUTP缺口末端標記。改編自阿加瓦爾及其同事【128】,經(jīng)韓國性醫(yī)學和男科學會許可。
目前,末端脫氧核苷酸轉移酶介導的dUTP缺口末端標記法、精子染色質結構分析,精子染色質分散分析是目前最常用的精子DNA片段分析方法之一[136]。盡管檢測方案和截止值大大提高了精子DNA片段檢測的精確度,減少了變話,但缺乏嚴格的標準化和明確的閾值,這一方法的廣泛應用受到了阻礙[137]。因此,盡管新出現(xiàn)的證據(jù)支持精子DNA碎片化在生殖結果中的作用(無論是自然的還是通過輔助生殖技術) [49], AUA或ASRM不推薦常規(guī)使用精子DNA片段檢測[30.49.50]。2017年,一份關于臨床實踐指南的出版物綜合了關于精子DNA片段測試的現(xiàn)有數(shù)據(jù),并在四種具體的臨床情況下[138](專題5)提出了建議。EAU指南建議對反復妊娠丟失的夫婦或不明原因不育癥的男性進行精子DNA片段檢測[30]。精子染色質結構分析顯示,DNA碎片指數(shù)超過30%與自然受孕或宮內受精妊娠的發(fā)生率較低有關[138]??紤]到精子DNA碎片和活性氧之間的密切和潛在的因果關系,測量精液氧化應激可能是評估精子功能的另一種手段。過量的活性氧物種,如果不被抗氧化劑平衡,會導致氧化應激,導致蛋白質、脂質和DNA損傷[139.140]。用化學發(fā)光法或熒光法直接測定精液中的活性氧對男性生育潛力的評估有一定的預測價值[141-143],其臨界值為每毫升小于102.2RLU/s/10?精子,以區(qū)分有生育能力的男性和不育的男性[144]。精液氧化還原電位是一個新的概念,用來測量精液樣本中的整體氧化應激,這是一個快速而簡單的試驗[145]。在一項多中心研究中報告了氧化還原電位測定的潛在臨床價值,該研究確定了每毫升1.34 mV/10?精子的臨界值,以區(qū)分精液參數(shù)正常和異常的男性[146]。雖然精液氧化應激可以通過各種檢測方法來確定,但EAU指南建議,活性氧的常規(guī)檢測應保持實驗性,直到這些測試在隨機對照試驗(RCTs)中得到驗證[30]。
管理
無精癥
無精子癥的原因可分為睪丸前、睪丸或睪丸后。無精子癥的睪丸前病因包括涉及下丘腦-垂體-性腺軸的內分泌異常。雖然先天性和獲得性性腺激素低減是罕見的,但它是為數(shù)不多的男性不育的醫(yī)學原因之一。常見的顯著原因包括Kallmann綜合征和外源性雄激素過多。在無精子癥男性的激素評估過程中,促性腺激素減退癥的特征是血清卵泡刺激素和睪酮濃度低。臨床上常用人絨毛膜促性腺激素與更年期促性腺激素合用,分別替代黃體生成素和促卵泡激素,誘導性腺功能減退癥患者生育。據(jù)報道,16-57%患有先天性性腺機能減退癥的男性在治療后成功懷孕[147]。一旦排除了青春期前的原因,無精子癥男性被歸類為梗阻性無精子癥或非梗阻性無精子癥(圖2)。睪丸活檢不再被推薦用于診斷。一般情況下,卵泡刺激素的臨界值為7.6mIU/mL,睪丸長軸為4.6 cm,用于區(qū)分梗阻性無精子癥和非梗阻性無精子癥[148]。梗阻性無精子癥患者有幾種選擇,包括取附睪或睪丸精子進行胞漿內單精子注射或手術重建[149]。原發(fā)性睪丸功能衰竭導致的生精功能障礙是非梗阻性無精子癥最常見的原因。雖然從梗阻性無精子癥患者中成功獲取睪丸精子的可能性很高,但非梗阻性無精子癥患者的成功率要低得多[150-152]。盡管非梗阻性無精子癥患者的精子產(chǎn)量往往不足以達到射精,但睪丸活檢發(fā)現(xiàn)異質性斑塊狀生精,且60%的非梗阻性無精子癥患者睪丸內可見精子,這為非梗阻性無精子癥的治療提供了取精的理論基礎[150-151]。雖然睪丸精子抽吸術可以使用麻醉部位經(jīng)皮進行,但精子回收率低導致該手術不常見,除非與睪丸定位結合使用[153]。根據(jù)對15個病例對照研究數(shù)據(jù)的薈萃分析,顯微切割睪丸精子提取可能比傳統(tǒng)睪丸精子提?。ㄊ中g取精52%對35%)更有效[154]。重要的是,顯微切割睪丸精子提取術可獲得大量的精子,睪丸組織切除較少,并發(fā)癥發(fā)生率最低[151.154]。然而,隨后的薈萃分析顯示,在非梗阻性無精子癥患者中,顯微切割和常規(guī)睪丸精子提取在取精或活產(chǎn)結局方面沒有差異[152]。在Klinefelter綜合征患者中也發(fā)現(xiàn)了類似的結果,他們在常規(guī)或睪丸顯微切割取精后比較了手術取精和活產(chǎn)結局[155]。需要進一步設計良好的隨機對照試驗來闡明哪種技術更有效。在指導患者使用某種特定的精子提取技術之前,應該考慮幾個變量(例如,手術技巧、睪丸組織學、費用和并發(fā)癥風險),因為沒有明確的建議使用哪種技術[30]。精索靜脈曲張修補術在非梗阻性無精子癥患者中的作用一直存在相當大的爭論,因為手術取精率和胞漿內單精子注射的結果尚未確定[156]。盡管生殖醫(yī)學取得了進展,但在約50%的非梗阻性無精子癥男性中,取精不成功,這使得這些男性只能選擇捐贈者精子受精或領養(yǎng)。
圖2:無精子癥的分類FSH--促卵泡激素。ICSI卵胞漿內單精子注射。
精索靜脈曲張
精索靜脈曲張是盤狀神經(jīng)叢靜脈擴張,從睪丸排出血液,在15%的健康男性和25%精液分析異常的男性中存在[30]。精索靜脈曲張影響睪丸功能的機制可能是多因素的,但最普遍接受的理論包括盤狀神經(jīng)叢中的靜脈血液相對停滯,這會提高睪丸溫度,導致活性氧水平升高[157]。
精索靜脈曲張修補術的適應證和手術方式一直存在爭議。在臨床精索靜脈曲張和精液分析異常的男性中,精索靜脈曲張修補術可以顯著改善精液參數(shù)[30.33.158]。目前的指南不建議精液分析正常的不育癥患者或亞臨床精索靜脈曲張患者行精索靜脈曲張切除術。然而,精索靜脈曲張修補術推薦給有臨床精索靜脈曲張、精液參數(shù)異常和原因不明的不育癥的男性,其女性伴侶的激素水平健康且卵子計數(shù)良好[30]。一項系統(tǒng)的回顧和薈萃分析得出結論,即使精液參數(shù)沒有改善,精索靜脈曲張修補術可以改善輔助生殖技術手術后的活產(chǎn)結局[159]。手術修復是精索靜脈曲張的主要治療方法,經(jīng)皮放射栓塞術是可行的替代方法[160]。精索靜脈曲張切除術可以通過后腹膜、腹腔鏡或機器人輔助的腹腔鏡、顯微外科腹股溝或腹股溝下入路完成[161]。不同手術方式的成功率沒有顯著差異,但顯微外科腹股溝下精索靜脈曲張切除術被認為是金標準,因為與其他手術方式相比,精索靜脈曲張復發(fā)(0.4%)或術后鞘膜積液(0.44%)的風險較低[30.32]。精索靜脈曲張切除術可以改善精液參數(shù),減少氧化應激,可能使夫婦免于進行昂貴的輔助生殖技術程序[32]。特發(fā)性男性不育
在患有特發(fā)性不育的男性中,盡管完成了診斷調查,但仍無法確定精液參數(shù)改變的原因[35]。目前對特發(fā)性男性不育的治療包括輔助生殖技術或經(jīng)驗性藥物治療,其中包括改善生活方式和激素或非激素治療。改變生活方式(如減肥、體力活動和戒煙)是重要的非侵入性措施[30],并與改善精子參數(shù)有關[162-165]。
經(jīng)驗性激素藥物治療的主要是選擇性雌激素受體調節(jié)劑和芳香化酶抑制劑。選擇性雌激素受體調節(jié)劑(特別是克羅米酚檸檬酸鹽)已被用于實驗室外改善精液參數(shù),但很少有高質量的隨機對照試驗證明其有效性[166.167]。外源性睪酮不應用于治療男性不育,因為它會抑制精子生成[168]。
80%的男性不育癥患者精液氧化還原電位升高支持了氧化應激作為男性不育原因的作用[37]。氧化應激可能是可逆的,這為治療提供了機會。因此,口服抗氧化劑是最常用的經(jīng)驗性藥物治療。盡管文獻中的研究存在異質性,但一項系統(tǒng)的綜述表明,抗氧化療法在改善男性不育癥患者精液參數(shù)和減輕氧化應激方面的效果[169]。2019年Cochrane的一篇綜述對6264名接受抗氧化劑聯(lián)合治療的不育癥男性的61項隨機對照試驗進行了薈萃分析,報告了低質量的證據(jù)表明,補充抗氧化劑可以改善臨床妊娠和活產(chǎn)的比例[170]。這項審查承認了重要的局限性,包括低質量的隨機對照試驗,由于隨機方法報告不當,存在嚴重的偏差風險,未能報告臨床結果(如活產(chǎn)、臨床妊娠)、高損耗率以及由于事件數(shù)量少和總樣本量少而導致的不精確性[170]。因此,在推薦最佳抗氧化劑方案之前,進一步的大規(guī)模隨機對照試驗報告臨床相關結果是必要的。
輔助生殖技術的作用
輔助生殖技術的使用大大提高了不孕不育夫婦生育親生子女的能力。在宮內受精中,在排卵期間,逐漸活動的精子從精液中分離出來,直接受精到宮腔內。對于更嚴重的男性因素不育癥,可以使用常規(guī)的體外受精或胞漿內單精子注射。盡管這些技術取得了成功,但一些夫婦的結局仍然不佳,這可能是由于卵子或精子的質量不佳,或者兩者都有。Lee和他的同事表明,使用嚴重少弱精子癥和非梗阻性無精子癥男性的精子進行胞質內單精子注射周期,在胚胎植入和臨床妊娠方面比正常精子癥男性的結局更差[171]。這一發(fā)現(xiàn)表明了父親貢獻的重要性,以及在胞漿內單精子注射之前選擇最好的精子的必要性。對不孕不育夫婦的最佳管理應該包括糾正精子缺陷,即使是對接受輔助生殖技術的夫婦也是如此。使用睪丸來源的精子越來越重要,因為與射出的精子相比,睪丸精子的精子DNA碎片較少[172]。因此,睪丸精子提取-胞漿內單精子注射可用于非無精子癥,精子DNA碎片化升高且之前胞漿內單精子注射周期失敗的男性。然而,還需要更多的證據(jù)來支持這一常規(guī)臨床實踐。未來的治療方法和挑戰(zhàn)
現(xiàn)代組學技術的進步促進了在基因、分子和細胞水平上診斷和治療男性不育。 下一代測序技術,如疾病靶向測序、全外顯子組和基因組測序,以及精子的表觀遺傳學分析,是基因測試中有前途的技術[173]。下一代測序技術已經(jīng)能夠識別與男性不育相關的新候選基因,如無精癥[174]、少精子癥[175]和特發(fā)性男性不育[107]。關于小RNA和microRNA在表觀遺傳調控中的作用[176]以及它們參與精子發(fā)生和附睪精子成熟的發(fā)現(xiàn),擴大了目前對這些過程的理解[177-180]。精漿代謝指紋分析是另一個很有前途的研究領域[181],尤其是在特發(fā)性男性不育的病例中。2019年發(fā)表的一項研究發(fā)現(xiàn),在精子正常的不育男性中,活性氧引起的精子DNA表觀遺傳改變和精子代謝譜與精液質量相關[182]。男性生殖蛋白質組學研究的轉變揭示了幾種蛋白質作為生物標志物與男性不育的各種原因有關,如氧化應激介導的精子功能障礙[183.184]、精索靜脈曲張[176.185.186]、弱精子癥[187.188]、球精子癥[189.190]和睪丸癌[191.192]。一個主要的問題是需要確定一個獨特的生物標志物與特定的條件。從戰(zhàn)略上講,通過開發(fā)一種對特定男性不育疾病具有高特異性的蛋白質生物標志物面板,可以實現(xiàn)正確的診斷。此外,在臨床應用組學研究結果之前,確定合適的組學數(shù)據(jù)的適用性或它們與適當?shù)呐R床驗證相結合是至關重要的[193]。未來男性不育的診斷和治療正在走向男性學與人工智能的融合,使用密集的機器學習。正在開發(fā)算法來預測哪些男性是無精子癥,可能需要進行基因調查、精子檢測,以及輔助生殖技術和體外受精胚胎選擇的選擇[194]。人工智能在男科和輔助生殖技術中的使用仍處于早期階段,并伴隨著倫理問題,因此有必要進行進一步的全面和廣泛的研究[195.196]。 在過去的十年里,在男性生殖方面的研究已經(jīng)看到了使用干細胞的下一代療法的重大進展。利用胚胎干細胞、誘導多能干細胞和膠質母細胞瘤干細胞建立了不同的體外方法和器官模型[197]。方和他的同事強調了人類誘導的多能干細胞在男性不育治療中的可能性[198]。人類誘導的多能干細胞可用于重建精子發(fā)生,并在CRISPR-Cas9基因編輯技術中用于糾正遺傳性疾病。此外,人類誘導的多能干細胞源性外顯體可能對接受化療或放療的患者恢復生精功能具有治療意義[198]。精原干細胞具有相似的再生和自我更新特性,為男性不育的治療開辟了新的前景[199.200]。對于接受過性腺毒性治療的兒科患者,自體冷凍精原組織移植被認為是保存生育能力的新策略[201]。然而,在干細胞治療用于男性不育的管理和治療之前,必須克服一些障礙,包括倫理問題和在干細胞體外培養(yǎng)過程中向后代傳播遺傳損傷的風險。
ContributorsAll authors wrote this Seminar and read and approved the final manuscript.
Declarationof interests We declare no competing interests.
AcknowledgmentsWe thank Joseph Terry and Mary Reagan, Center for Medical Art and Photography,Cleveland Clinic, for their assistance in preparing the figures.
參考文獻
1. Zegers-Hochschild F, Adamson GD, Dyer S,et al. The international glossary on infertility and fertility care, 2017.Fertil Steril 2017; 108: 393–406.2. Vander Borght M, Wyns C. Fertility andinfertility: definition and epidemiology. Clin Biochem 2018; 62: 2–10.3. Sun H, Gong TT, Jiang YT, Zhang S, ZhaoYH, Wu Q J. Global, regional, and national prevalence and disability-adjustedlife-years for infertility in 195 countries and territories, 1990–2017: resultsfrom a Global Burden of Disease Study, 2017. Aging (Albany NY) 2019; 11:10952–91.4. Bak CW, Seok HH, Song SH, Kim ES, Her YS,Yoon TK. Hormonal imbalances and psychological scars left behind in infertilemen. J Androl 2012; 33: 181–89.5. 5 Slade P, O’Neill C, Simpson AJ, LashenH. The relationship between perceived stigma, disclosure patterns, support anddistress in new attendees at an infertility clinic. Hum Reprod 2007; 22:2309–17.6. Wu AK, Elliott P, Katz PP, Smith JF. Timecosts of fertility care: the hidden hardship of building a family. FertilSteril 2013; 99: 2025–30.7. Glazer CH, Eisenberg ML, T?ttenborg SS, etal. Male factor infertility and risk of death: a nationwide record-linkagestudy. Hum Reprod 2019; 34: 2266–73.8. Ventimiglia E, Capogrosso P, Boeri L, etal. Infertility as a proxy of general male health: results of a cross-sectionalsurvey. Fertil Steril 2015; 104: 48–55.9. Salonia A, Matloob R, Gallina A, et al.Are infertile men less healthy than fertile men? Results of a prospectivecase-control survey. Eur Urol 2009; 56: 1025–31.10. Hanson BM, Eisenberg ML, Hotaling JM. Maleinfertility: a biomarker of individual and familial cancer risk. Fertil Steril2018; 109: 6–19.11. Tvrda E, Agarwal A, Alkuhaimi N. Malereproductive cancers and infertility: a mutual relationship. Int J Mol Sci2015; 16: 7230–60.12. Craig JR, Jenkins TG, Carrell DT, HotalingJM. Obesity, male infertility, and the sperm epigenome. Fertil Steril 2017;107: 848–59.13. Ding GL, Liu Y, Liu ME, et al. The effectsof diabetes on male fertility and epigenetic regulation during spermatogenesis.Asian J Androl 2015; 17: 948–53.14. Boeri L, Capogrosso P, Ventimiglia E, etal. Undiagnosed prediabetes is highly prevalent in primary infertilemen—results from a cross-sectional study. BJU Int 2019; 123: 1070–77.15. Ferlin A, Garolla A, Ghezzi M, et al.Sperm count and hypogonadism as markers of general male health. Eur Urol Focus2019; published online Aug 17. https://doi.org/10.1016/j.euf.2019.08.001.16. Anderson JE, Farr SL, Jamieson DJ, WarnerL, Macaluso M. Infertility services reported by men in the United States:national survey data. Fertil Steril 2009; 91: 2466–70.17. Thonneau P, Marchand S, Tallec A, et al.Incidence and main causes of infertility in a resident population (1,850,000)of three French regions (1988–1989). Hum Reprod 1991; 6: 811–16.18. Carlsen E, Giwercman A, Keiding N,Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years.BMJ 1992; 305: 609–13.19. Swan SH, Elkin EP, Fenster L. The questionof declining sperm density revisited: an analysis of 101 studies published1934–1996. Environ Health Perspect 2000; 108: 961–66.20. Mishra P, Negi MPS, Srivastava M, Singh K,Rajender S. Decline in seminal quality in Indian men over the last 37 years.Reprod Biol Endocrinol 2018; 16: 103.21. te Velde ER, Bonde JP. Misconceptions aboutfalling sperm counts and fertility in Europe. Asian J Androl 2013; 15: 195–98.22. Ravanos K, Petousis S, Margioula-SiarkouC, et al. Declining sperm counts... or rather not? A mini review. ObstetGynecol Surv 2018; 73: 595–605.23. Levine H, J?rgensen N, Martino-Andrade A,et al. Temporal trends in sperm count: a systematic review and meta-regressionanalysis. Hum Reprod Update 2017; 23: 646–59.24. Punab M, Poolamets O, Paju P, et al.Causes of male infertility: a 9-year prospective monocentre study on 1737 patientswith reduced total sperm counts. Hum Reprod 2017; 32: 18–31.25. Tournaye H, Krausz C, Oates RD. Novelconcepts in the aetiology of male reproductive impairment. Lancet DiabetesEndocrinol 2017; 5: 544–53.26. Olesen IA, Andersson AM, Aksglaede L, etal. Clinical, genetic, biochemical, and testicular biopsy findings among 1,213men evaluated for infertility. Fertil Steril 2017; 107: 74–82.e7.27. Esteves SC. Are specialized sperm functiontests clinically useful in planning assisted reproductive technology? Int BrazJ Urol 2020; 46: 116–23.28. Ramasamy R, Lin K, Gosden LV, Rosenwaks Z,Palermo GD, Schlegel PN. High serum FSH levels in men with nonobstructiveazoospermia does not affect success of microdissection testicular spermextraction. Fertil Steril 2009; 92: 590–93.29. Krausz C. Male infertility: pathogenesisand clinical diagnosis. Best Pract Res Clin Endocrinol Metab 2011; 25: 271–85.30. Salonia A, Bettocchi C, Carvalho J, et al.EAU guidelines on sexual and reproductive health. 2020.https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Sexual-and-Reproductive-Health-2020. pdf (accessedMay 29, 2020).31. Salonia A, Rastrelli G, Hackett G, et al.Paediatric and adult-onset male hypogonadism. Nat Rev Dis Primers 2019; 5: 38.32. Practice Committee of the American,Society for Male Reproduction and Urology. Report on varicocele andinfertility: a committee opinion. Fertil Steril 2014; 102: 1556–60.33. Baazeem A, Belzile E, Ciampi A, et al.Varicocele and male factor infertility treatment: a new meta-analysis and reviewof the role of varicocele repair. Eur Urol 2011; 60: 796–808.34. Damsgaard J, Joensen UN, Carlsen E, et al.Varicocele is associated with impaired semen quality and reproductive hormonelevels: a study of 7035 healthy young men from six European countries. Eur Urol2016; 70: 1019–29.35. Jungwirth A, Diemer T, Dohle G, et al. EAUguidelines on male infertility. Eur Urol 2015.https://uroweb.org/wp-content/uploads/EAU-Guidelines-Male-Infertility-20151.pdf (accessed May 29, 2020).36. Chehab M, Madala A, Trussell JC. On-labeland off-label drugs used in the treatment of male infertility. Fertil Steril2015; 103: 595–604.37. Agarwal A, Parekh N, Panner Selvam MK, etal. Male oxidative stress infertility (MOSI): proposed terminology and clinicalpractice guidelines for management of idiopathic male infertility. World J MensHealth 2019; 37: 296–312.38. Ma Y, He X, Qi K, et al. Effects ofenvironmental contaminants on fertility and reproductive health. J Environ Sci(China) 2019; 77: 210–17.39. Taha EA, Ez-Aldin AM, Sayed SK, GhandourNM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidativestress, zinc in fertile men. Urology 2012; 80: 822–25.40. Sharma R, Harlev A, Agarwal A, Esteves SC.Cigarette smoking and semen quality: a new meta-analysis examining the effectof the 2010 World Health Organization laboratory methods for the examination ofhuman semen. Eur Urol 2016; 70: 635–4541. Ricci E, Al Beitawi S, Cipriani S, et al.Semen quality and alcohol intake: a systematic review and meta-analysis. ReprodBiomed Online 2017; 34: 38–47.42. Gundersen TD, J?rgensen N, Andersson AM,et al. Association between use of marijuana and male reproductive hormones andsemen quality: a study among 1,215 healthy young men. Am J Epidemiol 2015; 182:473–81.43. Bracken MB, Eskenazi B, Sachse K, McSharryJE, Hellenbrand K, Leo-Summers L. Association of cocaine use with spermconcentration, motility, and morphology. Fertil Steril 1990; 53: 315–22.44. Fronczak CM, Kim ED, Barqawi AB. Theinsults of illicit drug use on male fertility. J Androl 2012; 33: 515–28.45. Eisenberg ML, Kim S, Chen Z, Sundaram R,Schisterman EF, Buck Louis GM. The relationship between male BMI and waistcircumference on semen quality: data from the LIFE study. Hum Reprod 2014; 29:193–200.46. Gaskins AJ, Afeiche MC, Hauser R, et al.Paternal physical and sedentary activities in relation to semen quality andreproductive outcomes among couples from a fertility center. Hum Reprod 2014;29: 2575–82.47. Nargund VH. Effects of psychologicalstress on male fertility. Nat Rev Urol 2015; 12: 373–82.48. Durairajanayagam D. Lifestyle causes ofmale infertility. Arab J Urol 2018; 16: 10–20.49. Practice Committee of the American Societyfor Reproductive Medicine. Diagnostic evaluation of the infertile male: acommittee opinion. Fertil Steril 2015; 103: e18–25.50. Jarow J, Sigman M, Kolettis PN, et al. Theoptimal evaluation of the infertile male: AUA Best Practice Statement. 2010.https://www.auanet.org/documents//education/clinical-guidance/MaleInfertility-d.pdf(accessed May 29, 2020).51. Lewis JM, Kaplan WE. Anatomy andembryology of the male reproductive tract and gonadal development. In:Lipshultz LI, Howards SS, Niederberger CS, eds. Infertility in the male, 4thedn. New York: Cambridge University Press, 2009: 1–13.52. Visser AJ, Heyns CF. Testicular functionafter torsion of the spermatic cord. BJU Int 2003; 92: 200–03.53. Kasturi SS, Osterberg C, Tannir J,Brannigan RE. The effect of genital tract infection and inflammation on maleinfertility. In: Lipshultz LI, Howards SS, CS N, eds. Infertility in the male,4th edn. New York: Cambridge University Press, 2009: 295–329.54. Henkel R, Maass G, Jung A, Haidl G, SchillWB, Schuppe HC. Age-related changes in seminal polymorphonuclear elastase inmen with asymptomatic inflammation of the genital tract. Asian J Androl 2007;9: 299–304.55. Boeri L, Pederzoli F, Capogrosso P, et al.Semen infections in men with primary infertility in the real-life setting.Fertil Steril 2020; 113: 1174–82.56. Condorelli RA, Russo GI, Calogero AE,Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on spermparameters: a systematic review and meta-analysis. J Endocrinol Invest 2017;40: 1209–18.57. WHO, Department of Reproductive Health andResearch. WHO laboratory manual for the examination and processing of humansemen, 5th edn. Geneva: World Health Organization, 2010.58. Sansone A, Di Dato C, de Angelis C, et al.Smoke, alcohol and drug addiction and male fertility. Reprod Biol Endocrinol2018; 16: 3.59. Alshahrani S, Ahmed AF, Gabr AH,Abalhassan M, Ahmad G. The impact of body mass index on semen parameters ininfertile men. Andrologia 2016; 48: 1125–29.60. Rastrelli G, Lotti F, Reisman Y, Sforza A,Maggi M, Corona G. Metabolically healthy and unhealthy obesity in erectiledysfunction and male infertility. Expert Rev Endocrinol Metab 2019; 14: 321–34.61. Tur-Kaspa I, Maor Y, Levran D, Yonish M, MashiachS, Dor J. How often should infertile men have intercourse to achieveconception? Fertil Steril 1994; 62: 370–75.62. Lotti F, Maggi M. Sexual dysfunction andmale infertility. Nat Rev Urol 2018; 15: 287–307.63. McCabe MP, Sharlip ID, Lewis R, et al.Incidence and prevalence of sexual dysfunction in women and men: a consensusstatement from the Fourth International Consultation on Sexual Medicine 2015. JSex Med 2016; 13: 144–52.64. Mowat A, Newton C, Boothroyd C, Demmers K,Fleming S. The effects of vaginal lubricants on sperm function: an in vitroanalysis. J Assist Reprod Genet 2014; 31: 333–39.65. Mesen TB, Steiner AZ. Effect of vaginallubricants on natural fertility. Curr Opin Obstet Gynecol 2014; 26: 186–92.66. Goldenberg RL, White R. The effect ofvaginal lubricants on sperm motility in vitro. Fertil Steril 1975; 26: 872–73.67. Edvinsson A, Bergman P, Steen Y, NilssonS. Characteristics of donor semen and cervical mucus at the time of conception.Fertil Steril 1983; 39: 327–32.68. Agarwal A, Deepinder F, Cocuzza M, ShortRA, Evenson DP. Effect of vaginal lubricants on sperm motility and chromatinintegrity: a prospective comparative study. Fertil Steril 2008; 89: 375–79.69. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 1st edn.Cambridge: Cambridge University Press, 1980.70. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 2nd edn.Cambridge: Cambridge University Press, 1987.71. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 3rd edn.Cambridge: Cambridge University Press, 1992.72. HO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge:Cambridge University Press, 1999.73. MacLeod J, Wang Y. Male fertilitypotential in terms of semen quality: a review of the past, a study of thepresent. Fertil Steril 1979; 31: 103–16.74. Cooper TG, Noonan E, von Eckardstein S, etal. World Health Organization reference values for human semen characteristics.Hum Reprod Update 2010; 16: 231–45.75. Patel AS, Leong JY, Ramasamy R. Predictionof male infertility by the World Health Organization laboratory manual forassessment of semen analysis: a systematic review. Arab J Urol 2017; 16:96–102.76. Sánchez V, Wistuba J, Mallidis C. Semenanalysis: update on clinical value, current needs and future perspectives.Reproduction 2013; 146: R249–58.77. Esteves SC. Clinical relevance of routinesemen analysis and controversies surrounding the 2010 World Health Organizationcriteria for semen examination. Int Braz J Urol 2014; 40: 443–53.78. Alshahrani S, Aldossari K, Al-Zahrani J,Gabr AH, Henkel R, Ahmad G. Interpretation of semen analysis using WHO 1999 andWHO 2010 reference values: abnormal becoming normal. Andrologia 2018; 50:e12838.79. Ombelet W, Bosmans E, Janssen M, et al.Semen parameters in a fertile versus subfertile population: a need for changein the interpretation of semen testing. Hum Reprod 1997; 12: 987–93.80. Keel BA, Stembridge TW, Pineda G, SerafyNT Sr. Lack of standardization in performance of the semen analysis amonglaboratories in the United States. Fertil Steril 2002; 78: 603–08.81. Riddell D, Pacey A, Whittington K. Lack ofcompliance by UK andrology laboratories with World Health Organizationrecommendations for sperm morphology assessment. Hum Reprod 2005; 20: 3441–45.82. Engel KM, Grunewald S, Schiller J, PaaschU. Automated semen analysis by SQA Vision versus the manual approach—aprospective double-blind study. Andrologia 2019; 51: e13149.83. Dearing C, Jayasena C, Lindsay K. Can theSperm Class Analyser (SCA) CASA-Mot system for human sperm motility analysisreduce imprecision and operator subjectivity and improve semen analysis? HumFertil (Camb) 2019; published online May 6. https://doi.org/10.1080/14647273.2019.1610581.84. Mortimer ST, van der Horst G, Mortimer D.The future of computer-aided sperm analysis. Asian J Androl 2015; 17: 545–53.85. Agarwal A, Henkel R, Huang CC, Lee MS.Automation of human semen analysis using a novel artificial intelligenceoptical microscopic technology. Andrologia 2019; 51: e13440.86. Elzanaty S, Malm J. Comparison of semenparameters in samples collected by masturbation at a clinic and at home. FertilSteril 2008; 89: 1718–22.87. Bhongade MB, Prasad S, Jiloha RC, Ray PC,Mohapatra S, Koner BC. Effect of psychological stress on fertility hormones andseminal quality in male partners of infertile couples. Andrologia 2015; 47:336–42.88. Kobori Y. Home testing for male factorinfertility: a review of current options. Fertil Steril 2019; 111: 864–70.89. Yu S, Rubin M, Geevarughese S, Pino JS,Rodriguez HF, Asghar W. Emerging technologies for home-based semen analysis.Andrology 2018; 6: 10–19.90. Sigman M. Klinefelter syndrome: how, what,and why? Fertil Steril 2012; 98: 251–52.91. Oates RD, Lamb DJ. Genetic aspects ofinfertility. In: Lipshultz LI, Howards SS, CS N, eds. Infertility in the male,4th edn. Cambridge: Cambridge University Press; 2009: 251–76. 92. Niederberger C. Clinical evaluation of themale. In: Niederberger C, ed. An introduction to male reproductive medicine.Cambridge: Cambridge University Press, 2011: 29–57.93. Lotti F, Maggi M. Ultrasound of the malegenital tract in relation to male reproductive health. Hum Reprod Update 2015;21: 56–83.94. Walsh TJ, Croughan MS, Schembri M, ChanJM, Turek PJ. Increased risk of testicular germ cell cancer among infertilemen. Arch Intern Med 2009; 169: 351–56.95. Nagler HM, Varicocele ABG. In: LipshultzLI, Howards SS, Niederberger, eds. Infertility in the male, 4th edn. Cambridge:Cambridge University Press; 2009: 331–61.96. Ring JD, Lwin AA, K?hler TS. Currentmedical management of endocrine-related male infertility. Asian J Androl 2016;18: 357–63.97. Ventimiglia E, Capogrosso P, Boeri L, etal. Validation of the American Society for Reproductive Medicine guidelines/recommendations in white European men presenting for couple’s infertility.Fertil Steril 2016; 106: 1076–1082.e1.98. Wang C, Nieschlag E, Swerdloff R, et al.Investigation, treatment and monitoring of late-onset hypogonadism in males:ISA, ISSAM, EAU, EAA and ASA recommendations. Eur J Endocrinol 2008; 159:507–14.99. Hackett G, Kirby M, Edwards D, et al.British Society for Sexual Medicine guidelines on adult testosteronedeficiency, with statements for UK practice. J Sex Med 2017; 14: 1504–23.100. Antonio L, Wu FC, O’Neill TW, et al. Lowfree testosterone is associated with hypogonadal signs and symptoms in men withnormal total testosterone. J Clin Endocrinol Metab 2016; 101: 2647–57.101. Lotti F, Corona G, Maseroli E, et al.Clinical implications of measuring prolactin levels in males of infertilecouples. Andrology 2013; 1: 764–71.102. Dabbous Z, Atkin SL. Hyperprolactinaemiain male infertility: clinical case scenarios. Arab J Urol 2017; 16: 44–52.103. Hauser R, Temple-Smith PD, Southwick GJ,de Kretser D. Fertility in cases of hypergonadotropic azoospermia. FertilSteril 1995; 63: 631–36.104. Martin-du-Pan RC, Bischof P. Increasedfollicle stimulating hormone in infertile men. Is increased plasma FSH alwaysdue to damaged germinal epithelium? Hum Reprod 1995; 10: 1940–45.105. Krausz C, Riera-Escamilla A. Genetics ofmale infertility. Nat Rev Urol 2018; 15: 369–84.106. Oud MS, Volozonoka L, Smits RM, VissersLELM, Ramos L, Veltman JA. A systematic review and standardized clinical validityassessment of male infertility genes. Hum Reprod 2019; 34: 932–41.107. Fakhro KA, Elbardisi H, Arafa M, et al.Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med2018; 20: 1365–73.108. Lipshultz LI, Lamb DJ. Risk of transmissionof genetic diseases by assisted reproduction. Nat Clin Pract Urol 2007; 4:460–61.109. Cariati F, D’Argenio V, Tomaiuolo R. Theevolving role of genetic tests in reproductive medicine. J Transl Med 2019; 17:267.110. Kumar R, Bhat A, Bamezai RN, et al. Necessityof nuclear and mitochondrial genome analysis prior to assisted reproductivetechniques/intracytoplasmic sperm injection. Indian J Biochem Biophys 2007; 44:437–42.111. Van Assche E, Bonduelle M, Tournaye H, etal. Cytogenetics of infertile men. Hum Reprod 1996; 11 (suppl 4): 1–24,discussion 25–26.112. Ravel C, Berthaut I, Bresson JL, SiffroiJP. Prevalence of chromosomal abnormalities in phenotypically normal andfertile adult males: large-scale survey of over 10,000 sperm donor karyotypes.Hum Reprod 2006; 21: 1484–89.113. Practice Committee of the American Societyfor Reproductive Medicine. Management of nonobstructive azoospermia: acommittee opinion. Fertil Steril 2018; 110: 1239–45.114. Jarvi K, Lo K, Fischer A, et al. CUAGuideline: the workup of azoospermic males. Can Urol Assoc J 2010; 4: 163–67.115. Gangel EK. AUA and ASRM producerecommendations for male infertility. American Urological Association, Inc andAmerican Society for Reproductive Medicine. Am Fam Physician 2002; 65: 2589–90.116. Ventimiglia E, Capogrosso P, Boeri L, etal. When to perform karyotype analysis in infertile men? Validation of theEuropean Association of Urology Guidelines with the proposal of a newpredictive model. Eur Urol 2016; 70: 920–23.117. Pryor JL, Kent-First M, Muallem A, et al.Microdeletions in the Y chromosome of infertile men. N Engl J Med 1997; 336:534–39.118. Kohn TP, Kohn JR, Owen RC, Coward RM. Theprevalence of Y-chromosome microdeletions in oligozoospermic men: a systematicreview and meta-analysis of European and North American studies. Eur Urol 2019;76: 626–36.119. Krausz C, Hoefsloot L, Simoni M,Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis ofY-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2: 5–19.120. Rives N. Y chromosome microdeletions andalterations of spermatogenesis, patient approach and genetic counseling. AnnEndocrinol (Paris) 2014; 75: 112–14.121. Kerem B, Rommens JM, Buchanan JA, et al.Identification of the cystic fibrosis gene: genetic analysis. Science 1989;245: 1073–80.122. Anguiano A, Oates RD, Amos JA, et al.Congenital bilateral absence of the vas deferens. A primarily genital form ofcystic fibrosis. JAMA 1992; 267: 1794–97.123. Male Infertility Best Practice PolicyCommittee of the American Urological Association. Report on varicocele andinfertility. Fertil Steril 2004; 82 (suppl 1): S142–45.124. Jurewicz M, Gilbert BR. Imaging andangiography in male factor infertility. Fertil Steril 2016; 105: 1432–42.125. Chanson P, Maiter D. The epidemiology,diagnosis and treatment of prolactinomas: the old and the new. Best Pract ResClin Endocrinol Metab 2019; 33: 101290.126. Ammar T, Sidhu PS, Wilkins CJ. Maleinfertility: the role of imaging in diagnosis and management. Br J Radiol 2012;85 (spec iss 1): S59–68.127. Wang C, Swerdloff RS. Limitations of semenanalysis as a test of male fertility and anticipated needs from newer tests.Fertil Steril 2014; 102: 1502–07.128. Agarwal A, Majzoub A, Parekh N, Henkel R.A schematic overview of the current status of male infertility practice. WorldJ Mens Health 2020; 38: 308–22.129. Oehninger S, Franken DR, Ombelet W. Spermfunctional tests. Fertil Steril 2014; 102: 1528–33.130. Agarwal A, Bragais FM, Sabanegh E.Assessing sperm function. Urol Clin North Am 2008; 35: 157–71, vii.131. Dias TR, Cho C-L, Agarwal A. Spermassessment: novel approaches and their indicative value. In: Nagy ZP, VargheseAC, Agarwal A, eds. In vitro fertilization: a textbook of current and emergingmethods and devices. Cham, Switzerland: Springer, 2019: 265–81.132. Agarwal A, Virk G, Ong C, du Plessis SS.Effect of oxidative stress on male reproduction. World J Mens Health 2014; 32:1–17.133. Agarwal A, Allamaneni SS. Sperm DNA damageassessment: a test whose time has come. Fertil Steril 2005; 84: 850–53.134. Ward WS. Function of sperm chromatinstructural elements in fertilization and development. Mol Hum Reprod 2010; 16:30–36.135. Oleszczuk K, Giwercman A, Bungum M.Intra-individual variation of the sperm chromatin structure assay DNAfragmentation index in men from infertile couples. Hum Reprod 2011; 26:3244–48.136. Majzoub A, Agarwal A, Cho CL, Esteves SC.Sperm DNA fragmentation testing: a cross sectional survey on current practicesof fertility specialists. Transl Androl Urol 2017; 6 (suppl 4): S710–19.137. Agarwal A, Panner Selvam MK, Baskaran S,Cho CL. Sperm DNA damage and its impact on male reproductive health: a criticalreview for clinicians, reproductive professionals and researchers. Expert RevMol Diagn 2019; 19: 443–57.138. Agarwal A, Cho CL, Majzoub A, Esteves SC.The Society for Translational Medicine: clinical practice guidelines for spermDNA fragmentation testing in male infertility. Transl Androl Urol 2017; 6(suppl 4): S720–33.139. Greabu M, Battino M, Mohora M, Olinescu R,Totan A, Didilescu A. Oxygen, a paradoxical element? Rom J Intern Med 2008; 46:125–35.140. Halliwell B, Gutteridge JMC. Free radicalsin biology and medicine. Oxford: Oxford University Press, 2015.141. Zorn B, Vidmar G, Meden-Vrtovec H. Seminalreactive oxygen species as predictors of fertilization, embryo quality andpregnancy rates after conventional in vitro fertilization and intracytoplasmicsperm injection. Int J Androl 2003; 26: 279–85.142. Yumura Y, Iwasaki A, Saito K, Ogawa T,Hirokawa M. Effect of reactive oxygen species in semen on the pregnancy ofinfertile couples. Int J Urol 2009; 16: 202–07.143. Venkatesh S, Shamsi MB, Dudeja S, Kumar R,Dada R. Reactive oxygen species measurement in neat and washed semen:comparative analysis and its significance in male infertility assessment. ArchGynecol Obstet 2011; 283: 121–26.144. Agarwal A, Ahmad G, Sharma R. Referencevalues of reactive oxygen species in seminal ejaculates using chemiluminescenceassay. J Assist Reprod Genet 2015; 32: 1721–29.145. Agarwal A, Sharma R, Roychoudhury S, DuPlessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reductionpotential in semen and seminal plasma. Fertil Steril 2016; 106: 566–73.e10.146. Agarwal A, Panner Selvam MK, Arafa M, etal. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS inmales with abnormal semen. Asian J Androl 2019; 21: 565–69.147. Young J, Xu C, Papadakis GE, et al.Clinical management of congenital hypogonadotropic hypogonadism. Endocr Rev2019; 40: 669–710.148. Schoor RA, Elhanbly S, Niederberger CS,Ross LS. The role of testicular biopsy in the modern management of maleinfertility. J Urol 2002; 167: 197–200.149. Practice Committee of the American Societyfor Reproductive Medicine in collaboration with the Society for MaleReproduction and Urology. The management of obstructive azoospermia: acommittee opinion. Fertil Steril 2019; 111: 873–80.150. Jow WW, Steckel J, Schlegel PN, Magid MS,Goldstein M. Motile sperm in human testis biopsy specimens. J Androl 1993; 14:194–98.151. Schlegel PN. Testicular sperm extraction:microdissection improves sperm yield with minimal tissue excision. Hum Reprod1999; 14: 131–35.152. Corona G, Minhas S, Giwercman A, et al.Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: asystematic review and meta-analysis. Hum Reprod Update 2019; 25: 733–57.153. Turek PJ, Cha I, Ljung BM. Systematicfine-needle aspiration of the testis: correlation to biopsy and results oforgan “mapping” for mature sperm in azoospermic men. Urology 1997; 49: 743–48.154. Bernie AM, Mata DA, Ramasamy R, SchlegelPN. Comparison of microdissection testicular sperm extraction, conventionaltesticular sperm extraction, and testicular sperm aspiration for nonobstructiveazoospermia: a systematic review and meta-analysis. Ferti Steril 2015; 104: 1099–103.e1–3.155. Corona G, Pizzocaro A, Lanfranco F, et al.Sperm recovery and ICSI outcomes in Klinefelter syndrome: a systematic reviewand meta-analysis. Hum Reprod Update 2017; 23: 265–75.156. Cho CL, Esteves SC, Agarwal A. Indicationsand outcomes of varicocele repair. Panminerva Med 2019; 61: 152–63.157. Durairajanayagam D, Agarwal A, Ong C.Causes, effects and molecular mechanisms of testicular heat stress. ReprodBiomed Online 2015; 30: 14–27.158. Esteves SC, Miyaoka R, Roque M, Agarwal A.Outcome of varicocele repair in men with nonobstructive azoospermia: systematicreview and meta-analysis. Asian J Androl 2016; 18: 246–53.159. Kirby EW, Wiener LE, Rajanahally S,Crowell K, Coward RM. Undergoing varicocele repair before assisted reproductionimproves pregnancy rate and live birth rate in azoospermic and oligospermic menwith a varicocele: a systematic review and meta-analysis. Fertil Steril 2016;106: 1338–43.160. Shridharani A, Owen RC, Elkelany OO, KimED. The significance of clinical practice guidelines on adult varicoceledetection and management. Asian J Androl 2016; 18: 269–75.161. Rajfer J. Varicoceles: practiceguidelines. Rev Urol 2007; 9: 161.162. H?konsen LB, Thulstrup AM, Aggerholm AS,et al. Does weight loss improve semen quality and reproductive hormones? Resultsfrom a cohort of severely obese men. Reprod Health 2011; 8: 24.163. Iba?ez-Perez J, Santos-Zorrozua B,Lopez-Lopez E, Matorras R, Garcia-Orad A. An update on the implication ofphysical activity on semen quality: a systematic review and meta-analysis. ArchGynecol Obstet 2019; 299: 901–21.164. Prentki Santos E, López-Costa S, Chenlo P,et al. Impact of spontaneous smoking cessation on sperm quality: case report.Andrologia 2011; 43: 431–35.165. Guthauser B, Boitrelle F, Plat A,Thiercelin N, Vialard F. Chronic excessive alcohol consumption and malefertility: a case report on reversible azoospermia and a literature review.Alcohol Alcohol 2014; 49: 42–44.166. Attia AM, Abou-Setta AM, Al-Inany HG.Gonadotrophins for idiopathic male factor subfertility. Cochrane Database SystRev 2013; 8: CD005071.167. Siddiq FM, Sigman M. A new look at themedical management of infertility. Urol Clin North Am 2002; 29: 949–63.168. Mulhall JP, Trost LW, Brannigan RE, et al.Evaluation and management of testosterone deficiency: AUA Guideline. J Urol2018; 200: 423–32.169. Gharagozloo P, Aitken RJ. The role ofsperm oxidative stress in male infertility and the significance of oralantioxidant therapy. Hum Reprod 2011; 26: 1628–40.170. Smits RM, Mackenzie-Proctor R, Yazdani A,Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility.Cochrane Database Syst Rev 2019; 3: CD007411.171. Lee SH, Song H, Park YS, Koong MK, SongIO, Jun JH. Poor sperm quality affects clinical outcomes of intracytoplasmicsperm injection in fresh and subsequent frozen-thawed cycles: potentialpaternal effects on pregnancy outcomes. Fertil Steril 2009; 91: 798–804.172. Esteves SC, Roque M, Bradley CK, GarridoN. Reproductive outcomes of testicular versus ejaculated sperm forintracytoplasmic sperm injection among men with high levels of DNAfragmentation in semen: systematic review and meta-analysis. Fertil Steril2017; 108: 456–67.e1.173. Thirumavalavan N, Gabrielsen JS, Lamb DJ.Where are we going with gene screening for male infertility? Fertil Steril2019; 111: 842–50.174. Araujo TF, Friedrich C, Grangeiro CHP, etal. Sequence analysis of 37 candidate genes for male infertility: challenges invariant assessment and validating genes. Andrology 2020; 8: 434–41.175. Chen S, Wang G, Zheng X, et al.Whole-exome sequencing of a large Chinese azoospermia and severe oligospermiacohort identifies novel infertility causative variants and genes. Hum Mol Genet2020; 29: 2451–59.176. Swain N, Samanta L, Agarwal A, et al.Aberrant upregulation of compensatory redox molecular machines may contributeto sperm dysfunction in infertile men with unilateral varicocele: a proteomicinsight. Antioxid Redox Signal 2020; 32: 504–21.177. Yadav RP, Kotaja N. Small RNAs inspermatogenesis. Mol Cell Endocrinol 2014; 382: 498–508.178. Hilz S, Modzelewski AJ, Cohen PE, GrimsonA. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development2016; 143: 3061–73.179. Ni MJ, Hu ZH, Liu Q, et al. Identificationand characterization of a novel non-coding RNA involved in sperm maturation.PLoS One 2011; 6: e26053.180. Holt JE, Stanger SJ, Nixon B, McLaughlinEA. Non-coding RNA in spermatogenesis and epididymal maturation. In: Wilhelm D,Bernard P, eds. Non-coding RNA and the reproductive system. Dordrecht: SpringerNetherlands, 2016: 95–120.181. Jafarzadeh N, Mani-Varnosfaderani A,Minai-Tehrani A, Savadi-Shiraz E, Sadeghi MR, Gilany K. Metabolomicsfingerprinting of seminal plasma from unexplained infertile men: a need fornovel diagnostic biomarkers. Mol Reprod Dev 2015; 82: 150.182. Darbandi M, Darbandi S, Agarwal A, et al.Reactive oxygen speciesinduced alterations in H19-Igf2 methylation patterns,seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241–53.183. Agarwal A, Durairajanayagam D, Halabi J,Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility.Reprod Biomed Online 2014; 29: 32–58.184. Sharma R, Agarwal A, Mohanty G, et al.Proteomic analysis of human spermatozoa proteins with oxidative stress. ReprodBiol Endocrinol 2013; 11: 48.185. Camargo M, Intasqui P, Belardin LB, et al.Molecular pathways of varicocele and its repair—a paired labelled shotgunproteomics approach. J Proteomics 2019; 196: 22–32.186. Agarwal A, Sharma R, Durairajanayagam D,et al. Differential proteomic profiling of spermatozoal proteins of infertilemen with unilateral or bilateral varicocele. Urology 2015; 85: 580–88.187. Cao X, Cui Y, Zhang X, et al. Proteomicprofile of human spermatozoa in healthy and asthenozoospermic individuals.Reprod Biol Endocrinol 2018; 16: 16.188. Saraswat M, Joenv??r? S, Jain T, et al.Human spermatozoa quantitative proteomic signature classifies normo- andasthenozoospermia. Mol Cell Proteomics 2017; 16: 57–72.189. Liao TT, Xiang Z, Zhu WB, Fan LQ. Proteomeanalysis of roundheaded and normal spermatozoa by 2-D fluorescence differencegel electrophoresis and mass spectrometry. Asian J Androl 2009; 11: 683–93.190. Alvarez Sedó C, Rawe VY, Chemes HE.Acrosomal biogenesis in human globozoospermia: immunocytochemical,ultrastructural and proteomic studies. Hum Reprod 2012; 27: 1912–21.191. Panner Selvam MK, Agarwal A, Pushparaj PN.A quantitative global proteomics approach to understanding the functionalpathways dysregulated in the spermatozoa of asthenozoospermic testicular cancerpatients. Andrology 2019; 7: 454–62.192. Dias TR, Agarwal A, Pushparaj PN, Ahmad G,Sharma R. Reduced semen quality in patients with testicular cancer seminoma isassociated with alterations in the expression of sperm proteins. Asian J Androl2020; 22: 88–93.193. Benson M. Clinical implications of omicsand systems medicine: focus on predictive and individualized treatment. JIntern Med 2016; 279: 229–40.194. Chu KY, Nassau DE, Arora H, Lokeshwar SD,Madhusoodanan V, Ramasamy R. Artificial intelligence in reproductive urology.Curr Urol Rep 2019; 20: 52.195. Rigby MJ. Ethical dimensions of usingartificial intelligence in health care. AMA J Ethics 2019; 21: e121–24.196. Davenport T, Kalakota R. The potential forartificial intelligence in healthcare. Future Healthc J 2019; 6: 94–98.197. Nagamatsu G, Hayashi K. Stem cells, invitro gametogenesis and male fertility. Reproduction 2017; 154: F79–91.198. Fang F, Li Z, Zhao Q, Li H, Xiong C. Humaninduced pluripotent stem cells and male infertility: an overview of currentprogress and perspectives. Hum Reprod 2018; 33: 188–95.199. Pourmoghadam Z, Aghebati-Maleki L,Motalebnezhad M, Yousefi B, Yousefi M. Current approaches for the treatment ofmale infertility with stem cell therapy. J Cell Physiol 2018; 233: 6455–69.200. Forbes CM, Flannigan R, Schlegel PN.Spermatogonial stem cell transplantation and male infertility: current statusand future directions. Arab J Urol 2017; 16: 171–80.201. Neuhaus N, Schlatt S. Stem cell-basedoptions to preserve male fertility. Science 2019; 363: 1283–84.