中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
人工智能達(dá)特茅斯夏季研究項(xiàng)目提案(1955年8月31日)中英對(duì)照版(36k字)

科學(xué)Sciences導(dǎo)讀:人工智能達(dá)特茅斯夏季研究項(xiàng)目提案(1955831)中英對(duì)照版。全文分為六大部分:一、提案說明,二、C.E.香農(nóng)(C.E. Shannon)的研究提案,三、M.L.明斯基(M. L. Minsky)的研究提案,四、N.羅切斯特(N. Rochester)的研究提案,五、約翰·麥卡錫(JohnMcCarthy)的研究提案,六、對(duì)人工智能問題感興趣的人。譯后只校對(duì)了一遍,不妥之處請(qǐng)看后面附的原文再次校正或留言。公號(hào)輸入欄發(fā)送AI達(dá)特茅斯1955提案獲取本PDF資料;歡迎大家贊賞支持科普、下載學(xué)習(xí)科技知識(shí)。

人工智能達(dá)特茅斯夏季研究項(xiàng)目提案(1955831)中英對(duì)照版(36k)

目錄

人工智能達(dá)特茅斯夏季研究項(xiàng)目提案(1955831)中譯版

A PROPOSAL FOR THEDARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

素材(880)


人工智能達(dá)特茅斯夏季研究項(xiàng)目提案(1955831)中譯版

APROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

|麥卡錫、明斯基、羅徹斯特、香農(nóng)等,譯|秦隴紀(jì),科學(xué)Sciences?20190607Fri

J.麥卡錫(J.McCarthy),達(dá)特茅斯學(xué)院

M.L.明斯基(M.L. Minsky),哈佛大學(xué)

N.羅切斯特(N.Rochester),I.B.M公司

C.E.香農(nóng)(C.E. Shannon),貝爾電話實(shí)驗(yàn)室

1955831

我們建議在1956年夏天在新罕布什爾州漢諾威的達(dá)特茅斯學(xué)院進(jìn)行為期2個(gè)月、10人的人工智能研究。該研究是在假設(shè)的基礎(chǔ)上進(jìn)行的,即學(xué)習(xí)的每個(gè)方面或任何其他智能特征原則上都可以如此精確地描述,以便可以使機(jī)器模擬它。將嘗試找到如何使機(jī)器使用語言,形成抽象和概念,解決現(xiàn)在為人類保留的各種問題,并改進(jìn)自己。我們認(rèn)為,如果一個(gè)經(jīng)過精心挑選的科學(xué)家團(tuán)隊(duì)在一起工作一個(gè)夏天,就可以在一個(gè)或多個(gè)這些問題上取得重大進(jìn)展。

以下是人工智能問題的一些方面:

1.自動(dòng)計(jì)算機(jī)

如果一臺(tái)機(jī)器可以做一項(xiàng)工作,則一臺(tái)可編程自動(dòng)計(jì)算機(jī)器能用來模擬這臺(tái)機(jī)器?,F(xiàn)有計(jì)算機(jī)的速度和內(nèi)存容量可能不足以模擬人腦的許多高級(jí)功能,但主要障礙不是缺乏機(jī)器容量,而是我們無法編寫充分利用我們所擁有優(yōu)勢(shì)的程序。

2.如何使用語言對(duì)計(jì)算機(jī)進(jìn)行編程

可以推測(cè),人類思想的很大一部分包括根據(jù)推理規(guī)則和猜想規(guī)則來操控單詞。從這個(gè)角度來看,形成包括承認(rèn)一個(gè)新詞和一些規(guī)則的概括,其中含有它的句子暗示并被其他人暗示。這個(gè)想法從未如此精確地制定,也沒有制定出實(shí)例。

3.神經(jīng)網(wǎng)絡(luò)

如何安排一組(假設(shè)的)神經(jīng)元以形成概念。烏特利·拉什夫斯基(Uttley,Rashevsky)和他的團(tuán)隊(duì),法利(Farley)和克拉克(Clark),匹茲(Pitts)和麥卡洛克(McCulloch),明斯基(Minsky),羅切斯特(Rochester)和霍蘭德(Holland)等人在這個(gè)問題上做了大量的理論和實(shí)驗(yàn)工作。已經(jīng)獲得了部分結(jié)果,但問題是需要更多的理論工作。

4.計(jì)算大小的理論

如果給出一個(gè)定義明確的問題(可以用機(jī)械方式測(cè)試提出的答案是否是有效答案),解決問題的方法是按順序嘗試所有可能的答案。這種方法效率低,要排除它,必須有一些計(jì)算效率的標(biāo)準(zhǔn)。一些考慮將表明,為了測(cè)量計(jì)算的效率,有必要手頭有一種測(cè)量計(jì)算裝置復(fù)雜性的方法,如果有一個(gè)具有功能復(fù)雜性的理論,則可以這樣做。香農(nóng)(Shannon)和麥卡錫(McCarthy)也獲得了關(guān)于這個(gè)問題的部分結(jié)果。

5.自我改進(jìn)

可能真正智能的機(jī)器將開展可以最好地描述為自我改進(jìn)的活動(dòng)。已經(jīng)提出了一些這樣做的方案,值得進(jìn)一步研究。這個(gè)問題似乎也可以抽象地進(jìn)行研究。

6.抽象

許多類型的抽象可以明確定義,而其他幾個(gè)則不那么明顯。直接嘗試對(duì)這些進(jìn)行分類并描述從感官數(shù)據(jù)和其他數(shù)據(jù)形成抽象的機(jī)器方法似乎是值得的。

7.隨機(jī)性和創(chuàng)造力

一個(gè)相當(dāng)有吸引力但又不完全不完整的猜想是,創(chuàng)造性思維和缺乏想象力的能力思維之間的區(qū)別在于注入一些隨機(jī)性。隨機(jī)性必須由直覺引導(dǎo)才能有效。換句話說,受過教育的猜測(cè)或預(yù)感包括在其他有序思維中的受控隨機(jī)性。

除了上述集體制定的研究問題外,我們還要求參與其中的個(gè)人描述他們將要開展的工作。附上項(xiàng)目的四個(gè)發(fā)起人的聲明。

我們建議如下組織小組的工作。

潛在參與者將被發(fā)送此提案的副本,并詢問他們是否愿意處理該組中的人工智能問題,如果是,他們希望如何工作。邀請(qǐng)將由組委會(huì)根據(jù)個(gè)人對(duì)小組工作潛在貢獻(xiàn)的估計(jì)作出。成員們將在小組工作期間的幾個(gè)月內(nèi)分發(fā)他們以前的工作和他們對(duì)受到攻擊的問題的看法。

會(huì)議期間將定期舉辦研討會(huì),讓會(huì)員有機(jī)會(huì)單獨(dú)和非正式的小組工作。

該提案的創(chuàng)始人是:

1.C.E.香農(nóng)(C.E. Shannon),數(shù)學(xué)家,貝爾電話實(shí)驗(yàn)室。香農(nóng)(Shannon)開發(fā)了信息統(tǒng)計(jì)理論,命題演算在開關(guān)電路中的應(yīng)用,并且有關(guān)于開關(guān)電路的有效合成,學(xué)習(xí)機(jī)器的設(shè)計(jì),密碼學(xué)和圖靈機(jī)理論的結(jié)果。他和J.麥卡錫(J. McCarthy)共同編輯自動(dòng)機(jī)理論的數(shù)學(xué)年鑒研究

2.M.L.明斯基(M. L. Minsky),哈佛大學(xué)數(shù)學(xué)與神經(jīng)學(xué)初級(jí)研究員。明斯基已經(jīng)建立了一個(gè)用于通過神經(jīng)網(wǎng)絡(luò)模擬學(xué)習(xí)的機(jī)器,并且已經(jīng)寫了一篇名為神經(jīng)網(wǎng)絡(luò)和腦模型問題的普林斯頓博士論文,其中包括學(xué)習(xí)理論和隨機(jī)神經(jīng)網(wǎng)絡(luò)理論的結(jié)果。

3.N.羅切斯特(N. Rochester),IBM公司信息研究經(jīng)理,紐約波基普西。羅切斯特七年來一直關(guān)注雷達(dá)和計(jì)算機(jī)械的發(fā)展。他和另一位工程師共同負(fù)責(zé)IBM Type 701的設(shè)計(jì),這是目前廣泛使用的大型自動(dòng)計(jì)算機(jī)。他研究了一些當(dāng)今廣泛使用的自動(dòng)編程技術(shù),并且一直關(guān)注如何讓機(jī)器完成以前只能由人來完成的任務(wù)相關(guān)問題。他還致力于模擬神經(jīng)網(wǎng)絡(luò),特別強(qiáng)調(diào)使用計(jì)算機(jī)測(cè)試神經(jīng)生理學(xué)的理論。

4.J.麥卡錫(J.McCarthy),達(dá)特茅斯學(xué)院數(shù)學(xué)助理教授。麥卡錫研究了許多與思維過程的數(shù)學(xué)本質(zhì)相關(guān)的問題,包括圖靈機(jī)的理論,計(jì)算機(jī)的速度,大腦模型與環(huán)境的關(guān)系,以及機(jī)器對(duì)語言的使用。這項(xiàng)工作的一些成果包含在即將出版的香農(nóng)(Shannon)麥卡錫(McCarthy)編輯的年鑒研究(Annals Study)中。麥卡錫的其他工作一直是微分方程領(lǐng)域。

洛克菲勒基金會(huì)被要求在以下基礎(chǔ)上為該項(xiàng)目提供財(cái)政支持:

1.每個(gè)教師級(jí)別參與者1200美元的薪水,他們沒有得到他自己組織的支持。例如,預(yù)計(jì)來自貝爾實(shí)驗(yàn)室和IBM公司的參與者將得到這些組織的支持,而來自達(dá)特茅斯和哈佛的參與者將需要基金會(huì)的支持。

2.最多兩名研究生的700美元薪水。

3.遠(yuǎn)方參與者的鐵路票花費(fèi)。

4.為同時(shí)在其他地方租住的人租房。

5.秘書費(fèi)用650美元,秘書費(fèi)500美元,復(fù)制費(fèi)用150美元。

6.組織費(fèi)用200美元。(包括由參與者復(fù)制初步工作的費(fèi)用和組織目的所需的旅行費(fèi)用。

7.兩三個(gè)人短期訪問的費(fèi)用。

預(yù)計(jì)花費(fèi)

61200的薪資             $7200

2700的薪資               1400

8份旅行和租金費(fèi)用平均300  2400

秘書和組織費(fèi)用              850

額外旅行費(fèi)用                600

意外事件                    550

                            ----

                         $13,500

C.E.香農(nóng)(C.E. Shannon)的研究提案

我想將我的研究投入到下面列出的一個(gè)或兩個(gè)主題中。雖然我希望這樣做,但出于個(gè)人考慮,我可能無法參加完整的兩個(gè)月。盡管如此,我打算在任何時(shí)間都在那里。

1.將信息論概念應(yīng)用于計(jì)算機(jī)器和腦模型。信息理論中的基本問題是在嘈雜的信道上可靠地傳輸信息。計(jì)算機(jī)器中的類似問題是使用不可靠元件的可靠計(jì)算。這個(gè)問題已經(jīng)由馮諾依曼研究的謝弗行程元件(Sheffer strokeelements),香農(nóng)(Shannon)摩爾(Moore)研究了繼電器(relays);但仍有許多懸而未決的問題。幾個(gè)要素的問題,類似于信道容量的概念的發(fā)展,對(duì)所需冗余的上限和下限的更尖銳的分析等都是重要的問題。另一個(gè)問題涉及信息網(wǎng)絡(luò)理論,其中信息在許多閉環(huán)中流動(dòng)(與通信理論中通??紤]的簡(jiǎn)單單向信道形成對(duì)比)。延遲問題在閉環(huán)情況下變得非常重要,似乎有必要采用一種全新的方法。當(dāng)已知消息集合的過去歷史的一部分時(shí),這可能涉及諸如部分熵(partial entropies)之類的概念。

2.匹配環(huán)境——自動(dòng)機(jī)的大腦模型方法。通常,機(jī)器或動(dòng)物只能適用于在有限的一類環(huán)境中操作。即使是復(fù)雜的人類大腦也首先適應(yīng)其環(huán)境的簡(jiǎn)單方面,并逐漸建立起更復(fù)雜的特征。我建議通過一系列匹配(理論上)環(huán)境的并行開發(fā)來研究腦模型的合成。這里的重點(diǎn)是澄清環(huán)境模型并將其表示為數(shù)學(xué)結(jié)構(gòu)。探索定理、寫音樂或下棋。我在這里建議從簡(jiǎn)單開始,當(dāng)環(huán)境不是敵對(duì)(只是漠不關(guān)心)或復(fù)雜時(shí),并通過一系列簡(jiǎn)單階段向這些高級(jí)活動(dòng)方向努力。

M.L.明斯基(M. L. Minsky)的研究提案

設(shè)計(jì)具有以下學(xué)習(xí)類型的機(jī)器并不困難。該機(jī)器具有輸入和輸出通道以及內(nèi)部裝置,可以對(duì)輸入提供不同的輸出響應(yīng),使得機(jī)器可以通過反復(fù)試驗(yàn)和錯(cuò)誤過程訓(xùn)練以獲得一個(gè)范圍輸入輸出功能這樣的機(jī)器,當(dāng)放置在適當(dāng)?shù)沫h(huán)境中并且被賦予成功失敗的標(biāo)準(zhǔn)時(shí),可以被訓(xùn)練成表現(xiàn)出追求目標(biāo)的行為。除非機(jī)器具有或能夠開發(fā)一種抽象感覺材料的方式,否則它只能通過緩慢的緩慢步驟在復(fù)雜的環(huán)境中前進(jìn),并且通常不會(huì)達(dá)到高水平的行為。

現(xiàn)在讓成功的標(biāo)準(zhǔn)不僅僅是在機(jī)器的輸出通道上出現(xiàn)所需的活動(dòng)模式,而是在給定環(huán)境中給定操作的性能。然后在某些方面,該動(dòng)作機(jī)(motor)狀況似乎是感覺狀況的雙重情形,只有當(dāng)機(jī)器同樣能夠組裝動(dòng)作機(jī)抽象集合并將其輸出活動(dòng)與環(huán)境變化聯(lián)系起來時(shí),進(jìn)展才能相當(dāng)快。這種動(dòng)作機(jī)抽象只有當(dāng)它們與環(huán)境的變化相關(guān)時(shí)才有價(jià)值,這些變化可以被機(jī)器檢測(cè)為感覺狀況的變化,即,如果它們通過環(huán)境結(jié)構(gòu),機(jī)器正在使用的感覺類型的抽象。

我已經(jīng)研究了這樣的系統(tǒng)一段時(shí)間并且覺得如果可以設(shè)計(jì)一種機(jī)器,其中可以使感覺和運(yùn)動(dòng)抽象形成,以滿足某些關(guān)系,可以產(chǎn)生高度的行為。這些關(guān)系涉及配對(duì)、動(dòng)作機(jī)抽象與感官抽象,以產(chǎn)生新的感覺情境,表示如果相應(yīng)的運(yùn)動(dòng)機(jī)行為實(shí)際發(fā)生可能預(yù)期的環(huán)境變化。

將要尋找的重要結(jié)果是機(jī)器傾向于在其自身內(nèi)部構(gòu)建一個(gè)放置它的環(huán)境的抽象模型。如果遇到問題,它可以首先在內(nèi)部抽象環(huán)境模型中探索解決方案,然后嘗試外部實(shí)驗(yàn)。由于這項(xiàng)初步的內(nèi)部研究,這些外部實(shí)驗(yàn)似乎相當(dāng)聰明,而且這種行為必須被視為富有想象力

我的論文中描述了一個(gè)關(guān)于如何做到這一點(diǎn)的非常初步的建議,我打算在這個(gè)方向上做進(jìn)一步的工作。我希望到1956年夏天,我能夠?qū)⑦@種機(jī)器的模型與計(jì)算機(jī)編程階段相當(dāng)接近。

N.羅切斯特(N. Rochester)的研究提案

機(jī)器性能的獨(dú)創(chuàng)性

在編寫用于自動(dòng)計(jì)算器的程序時(shí),通常為機(jī)器提供一組規(guī)則以涵蓋可能出現(xiàn)并面對(duì)機(jī)器的每個(gè)意外事件。有人期望機(jī)器能夠盲目地遵循這套規(guī)則,而顯得沒有任何原創(chuàng)性或常識(shí)。此外,當(dāng)機(jī)器感到困惑時(shí),一個(gè)人只會(huì)對(duì)自己感到惱火,因?yàn)樗麨闄C(jī)器提供的規(guī)則有點(diǎn)矛盾。最后,在為機(jī)器編寫程序時(shí),有時(shí)必須以非常費(fèi)力的方式處理問題,而如果機(jī)器只有一點(diǎn)點(diǎn)直覺或者可以做出合理的猜測(cè),問題的解決方案可能是非常直接的。本文描述了一個(gè)關(guān)于如何使機(jī)器在上面建議的一般領(lǐng)域中以更復(fù)雜的方式表現(xiàn)的設(shè)想。本文討論了我偶爾工作了大約五年的問題,希望明年夏天在人工智能項(xiàng)目中進(jìn)一步研究這個(gè)問題。

發(fā)明或發(fā)現(xiàn)的過程

生活是在給我們提供了解決許多問題的程序(procedures)之文化環(huán)境中。這些程序的工作原理尚不清楚,但我將根據(jù)Craik1建議的模型討論問題的這一方面。他認(rèn)為,心理行為基本上包括在大腦內(nèi)構(gòu)建小型引擎,可以模擬并預(yù)測(cè)與環(huán)境相關(guān)的抽象。因此,已理解問題的解決方案如下:

1.該環(huán)境提供形成某些抽象的數(shù)據(jù)。

2.抽象以及某些內(nèi)部習(xí)慣或驅(qū)動(dòng)提供:

   2.1 根據(jù)將來要實(shí)現(xiàn)的期望條件來定義問題,目標(biāo)。

   2.2 建議的解決問題的措施。

   2.3 刺激引起大腦引擎回應(yīng)這種情況。

3.然后該引擎運(yùn)行以預(yù)測(cè)這種環(huán)境狀況和擬議的反應(yīng)將導(dǎo)致什么。

4.如果預(yù)測(cè)對(duì)應(yīng)于目標(biāo),則個(gè)體繼續(xù)按照指示行事。

如果生活在他的文化環(huán)境中為個(gè)人提供問題的解決方案,則該預(yù)測(cè)將對(duì)應(yīng)于該目標(biāo)。關(guān)于作為存儲(chǔ)程序計(jì)算器的個(gè)人,該程序包含用于覆蓋該特定意外事件的規(guī)則。

對(duì)于更復(fù)雜狀況,其規(guī)則可能更復(fù)雜。該規(guī)則可能要求測(cè)試一組可能的操作中的每一個(gè),以確定提供解決方案的操作。更復(fù)雜的一套規(guī)則可能會(huì)提供環(huán)境的不確定性,例如在玩tic tac toe(三子棋:九宮格中的三連棋游戲,一款休閑益智游戲,秦注)時(shí),不僅要考慮他的下一步動(dòng)作,還要考慮環(huán)境的各種可能動(dòng)作(他的對(duì)手)。

現(xiàn)在考慮一個(gè)問題,在這個(gè)問題中,文化中的任何個(gè)體都沒有解決方案,并且抵制在解決方案上的努力。這可能是當(dāng)前未解決的典型科學(xué)問題。個(gè)人可能會(huì)嘗試解決它,并發(fā)現(xiàn)每一個(gè)合理的行為都會(huì)導(dǎo)致失敗。換句話說,存儲(chǔ)的程序包含解決此問題的規(guī)則,但規(guī)則略有錯(cuò)誤。

為了解決這個(gè)問題,個(gè)人將不得不做一些不合理或意想不到的事情,正如文化所積累的智慧傳統(tǒng)所判斷的那樣。他可以通過隨機(jī)嘗試不同的事情來獲得這種行為,但這種方法通常效率太低。通常有太多可能的行動(dòng)方案,其中只有一小部分是可以接受的。個(gè)人需要預(yù)感,這是意想不到的,但并非完全合理。一些問題,通常是相當(dāng)新的問題,并且沒有抵抗很多努力,只需要一點(diǎn)點(diǎn)隨機(jī)性。其他人,通常是那些長(zhǎng)期抵制解決方案的人,需要與傳統(tǒng)方法進(jìn)行真正奇怪的偏離。解決方案需要原創(chuàng)性的問題可能會(huì)產(chǎn)生一種涉及隨機(jī)性的解決方法。

Craik1的模型而言,應(yīng)該模擬環(huán)境的引擎首先就無法正確模擬。因此,有必要嘗試對(duì)該引擎進(jìn)行各種修改,直到找到使其完成所需的動(dòng)作。

不是根據(jù)他的文化中的個(gè)體來描述問題,而是可以根據(jù)對(duì)不成熟個(gè)體的學(xué)習(xí)來描述。當(dāng)個(gè)人被提出超出其經(jīng)驗(yàn)范圍的問題時(shí),他必須以類似的方式克服它。

迄今為止,在問題的機(jī)器解決方案中使用該方法的最近實(shí)用方法是蒙特卡羅方法的擴(kuò)展。在適用于蒙特卡羅的通常問題中,存在一種嚴(yán)重誤解的情況,其中存在太多可能的因素,并且無法確定在制定分析解決方案時(shí)忽略哪些因素。所以數(shù)學(xué)家有機(jī)器做了幾千個(gè)隨機(jī)實(shí)驗(yàn)。這些實(shí)驗(yàn)的結(jié)果提供了關(guān)于答案可能是什么的粗略猜測(cè)。蒙特卡羅方法的擴(kuò)展是使用這些結(jié)果作為指導(dǎo),以確定忽略什么,以便簡(jiǎn)化問題,足以獲得近似的解析方案。

可能會(huì)問為什么該方法應(yīng)該包括隨機(jī)性。為什么不應(yīng)該按照當(dāng)前知識(shí)狀態(tài)預(yù)測(cè)其成功的概率的順序來嘗試每種可能性?對(duì)于被他的文化所提供的環(huán)境所包圍的科學(xué)家來說,可能只有一位科學(xué)家不可能在他的生活中解決問題,因此需要許多人的努力。如果他們使用隨機(jī)性,他們可以立即在其上工作,而無需完全重復(fù)工作。如果他們使用系統(tǒng),他們將需要不可能的詳細(xì)通信。對(duì)于在與其他個(gè)體競(jìng)爭(zhēng)中成熟的個(gè)體,混合策略(使用博弈論術(shù)語)的要求有利于隨機(jī)性。對(duì)于機(jī)器,可能需要隨機(jī)性來克服程序員的短視和偏見。雖然隨機(jī)性的必要性顯然尚未得到證實(shí),但有許多證據(jù)表明它是有利的。

具有隨機(jī)性的機(jī)器

為了編寫程序使自動(dòng)計(jì)算器使用原創(chuàng)性,而不使用洞見(forsight)來引入隨機(jī)性。例如,如果一個(gè)人編寫了一個(gè)程序,那么每10,000個(gè)步驟中就會(huì)產(chǎn)生一個(gè)隨機(jī)數(shù),并將其作為指令執(zhí)行,結(jié)果可能會(huì)很混亂。然后在一定程度的混亂之后,機(jī)器可能會(huì)嘗試禁止或執(zhí)行停止指令,實(shí)驗(yàn)將結(jié)束。

然而,有兩種方法似乎是合理的。其中之一是找到大腦如何設(shè)法做這種事情并復(fù)制它。另一種是在解決方案中采取某些需要原創(chuàng)性的實(shí)際問題,并試圖找到一種方法來編寫程序以在自動(dòng)計(jì)算器上解決它們。這些方法中的任何一種都可能最終成功。然而,目前尚不清楚哪個(gè)會(huì)更快或者需要多少年或幾代。到目前為止,我在這些方面的大部分努力都是采用前一種方法,因?yàn)槲矣X得最好掌握所有相關(guān)科學(xué)知識(shí),以便解決這個(gè)難題,而且我已非常了解目前計(jì)算器的狀況和為其編程的工藝。

大腦的控制機(jī)制與今天的計(jì)算器中的控制機(jī)制明顯不同。表現(xiàn)其差異之一的是失敗方式。計(jì)算器的失敗很有特征性地產(chǎn)生了一些非常不合理的東西。內(nèi)存或數(shù)據(jù)傳輸中的錯(cuò)誤,可能至少就在最重要的數(shù)字中。控制中的錯(cuò)誤幾乎可以做任何事情。它可能執(zhí)行錯(cuò)誤的指令或操作錯(cuò)誤的輸入輸出單元。另一方面,語言中的人為錯(cuò)誤往往會(huì)導(dǎo)致幾乎有意義的陳述(考慮一個(gè)幾乎睡著,稍微醉酒,或稍微發(fā)燒的人)。也許大腦的機(jī)制是這樣的,推理中的輕微錯(cuò)誤會(huì)以正確的方式引入隨機(jī)性。也許控制行為2中的序列順序的機(jī)制引導(dǎo)隨機(jī)因素,以便提高想象過程相對(duì)于純隨機(jī)性的效率。

在我們的自動(dòng)計(jì)算器上模擬神經(jīng)網(wǎng)絡(luò)已經(jīng)完成了一些工作。一個(gè)目的是看是否有可能以適當(dāng)?shù)姆绞揭腚S機(jī)性。事實(shí)證明,神經(jīng)元的活動(dòng)與解決問題之間存在太多未知的聯(lián)系,這種方法尚未完成。結(jié)果對(duì)網(wǎng)和神經(jīng)元的行為有所啟發(fā),但尚未找到解決需要?jiǎng)?chuàng)意的問題的方法。

這項(xiàng)工作的一個(gè)重要方面是努力使機(jī)器形成和操縱概念,抽象,概括和名稱。試圖測(cè)試大腦是如何做到的理論3。第一組實(shí)驗(yàn)引發(fā)了對(duì)該理論某些細(xì)節(jié)的修訂。第二組實(shí)驗(yàn)正在進(jìn)行中。到明年夏天,這項(xiàng)工作將完成,并將編寫最終報(bào)告。

我的程序是嘗試下一個(gè)編寫程序來解決問題,這些問題是在解決方案中需要原創(chuàng)性的一些有限類問題的成員?,F(xiàn)在預(yù)測(cè)明年夏天將會(huì)是什么階段還是僅僅是;然后我將如何定義直接問題。但是,本文中描述的潛在問題是我打算追求的。用一句話來說,問題是:我怎樣才能制造出能夠在問題解決方案中展現(xiàn)獨(dú)創(chuàng)性的機(jī)器?

參考

1.K.J.W. Craik解釋的本質(zhì),劍橋大學(xué)出版社,1943(轉(zhuǎn)載于1952)92頁(yè)。

2.K.S. Lashley,行為中的序列順序問題行為中的腦機(jī)制,Hixon Symposium,L.A.Jeffress編輯,John WileySons,紐約,第112-146頁(yè),1951年。

3.D. O. Hebb,行為組織,John WileySons,紐約,1949

1.K.J.W. Craik, The Nature of Explanation, Cambridge University Press,1943 (reprinted 1952), p. 92.

2. K.S.Lashley, ``The Problem of Serial Order in Behavior'', in Cerebral Mechanismin Behavior, the Hixon Symposium, edited by L.A. Jeffress, John Wiley &Sons, New York, pp. 112-146, 1951.

3. D.O. Hebb, The Organization of Behavior, John Wiley & Sons, New York,1949

約翰·麥卡錫(John McCarthy)的研究提案

在明年和夏季人工智能研究項(xiàng)目期間,我建議研究語言與智力的關(guān)系。似乎很清楚,將試驗(yàn)和錯(cuò)誤方法直接應(yīng)用于感覺數(shù)據(jù)和運(yùn)動(dòng)活動(dòng)之間的關(guān)系不會(huì)導(dǎo)致任何非常復(fù)雜的行為。相反,試驗(yàn)和錯(cuò)誤方法必須應(yīng)用于更高的抽象層次。人類的思想顯然使用語言作為處理復(fù)雜現(xiàn)象的手段。較高級(jí)別的試錯(cuò)過程經(jīng)常采用制定猜想和測(cè)試的形式。英語有許多屬性,目前所描述的每種形式語言都缺乏這些屬性。

1.用非正式數(shù)學(xué)補(bǔ)充的英語論證可以簡(jiǎn)明扼要。

2.英語是普遍的,因?yàn)樗梢栽谟⒄Z中設(shè)置任何其他語言,然后在適當(dāng)?shù)牡胤绞褂迷撜Z言。

3.英語用戶可以在其中引用自己并制定關(guān)于他在解決他正在處理的問題方面的進(jìn)展的陳述。

4.除了舉證規(guī)則外,如果完全制定英語則會(huì)有猜想規(guī)則。

迄今為止制定的邏輯語言要么是指令列表,要么使計(jì)算機(jī)進(jìn)行預(yù)先指定的計(jì)算,要么正式化數(shù)學(xué)部分。后者的構(gòu)建如下:

1.在非正式數(shù)學(xué)中容易描述,

2.允許將非正式數(shù)學(xué)的陳述翻譯成語言,

3.輕松爭(zhēng)論是否證明(???)

沒有嘗試用人工語言制作像非正式證據(jù)一樣簡(jiǎn)短的證據(jù)。因此,似乎希望嘗試構(gòu)造一種人工語言,計(jì)算機(jī)可以編程用于需要猜測(cè)和自我引用的問題。它應(yīng)該與英語相對(duì)應(yīng),因?yàn)殛P(guān)于給定主題的簡(jiǎn)短英語陳述應(yīng)該在語言中有短記者,因此應(yīng)該簡(jiǎn)短的論點(diǎn)或推測(cè)論證。我希望嘗試制定一種具有這些屬性的語言,并且除了包含物理對(duì)象,事件等的概念之外,希望使用這種語言可以對(duì)機(jī)器進(jìn)行編程以學(xué)習(xí)如何很好地玩游戲以及其他任務(wù)。

對(duì)人工智能問題感興趣的人

這個(gè)名單的目的,是讓那些人知道誰有興趣接收有關(guān)問題的文件。名單中的人將獲得達(dá)特茅斯人工智能夏季項(xiàng)目報(bào)告的副本。[1996年注:沒有報(bào)告。]

該名單由參與或參觀達(dá)特茅斯人工智能夏季研究項(xiàng)目或已知對(duì)該主題感興趣的人組成。它被發(fā)送給本名單和其他幾個(gè)人。

就目前的目的而言,人工智能問題被認(rèn)為是使機(jī)器以一種被稱為智能的方式運(yùn)行,如果人類如此表現(xiàn)的話。

修訂后的名單將很快發(fā)布,以便任何有興趣進(jìn)入名單的人或希望更改其地址的任何人都應(yīng)寫信給:

約翰·麥卡錫

數(shù)學(xué)系

達(dá)特茅斯學(xué)院

新罕布什爾州漢諾威

[1996年注:并非所有這些人都參加了達(dá)特茅斯會(huì)議。他們是我們認(rèn)為可能對(duì)人工智能感興趣的人。](秦隴紀(jì)注:47)

該清單包括:

阿德爾森,馬文;休斯飛機(jī)公司;機(jī)場(chǎng)站,洛杉磯,加利福尼亞州

阿什比,W.R.;巴恩伍德之家;格洛斯特,英格蘭

巴克斯,約翰;IBM公司;麥迪遜大街590號(hào),紐約州紐約市

伯恩斯坦,亞歷克斯;IBM公司;麥迪遜大街590號(hào),紐約州紐約市

比奇洛,J.H.;高等研究院;新澤西州普林斯頓

伊萊亞斯,彼得;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

杜達(dá),W.L.IBM研究實(shí)驗(yàn)室;紐約州波基普西市

戴維斯,保羅 M.;第181317號(hào);加利福尼亞州洛杉磯市

法諾,R.M.;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

法利,B.G.;公園大道324號(hào);馬薩諸塞州阿靈頓

加蘭特,E.H.;賓夕法尼亞大學(xué);賓夕法尼亞州費(fèi)城

蓋爾森特,赫伯特;IBM研究院;紐約州波基普西市

格拉肖,哈維A.;奧利維亞街1102號(hào);安娜堡,密歇根州

戈?duì)栐鸂枺詹?;?/span>11330號(hào);紐約州紐約市

哈格爾巴格;貝爾電話實(shí)驗(yàn)室;新澤西州默里希爾

米勒,喬治A.;紀(jì)念館;哈佛大學(xué);馬薩諸塞州劍橋市

哈蒙,萊昂D.;貝爾電話實(shí)驗(yàn)室;新澤西州默里希爾

霍蘭德,約翰H.;E.R.I.密歇根大學(xué);安娜堡,密歇根州

霍爾特,阿納托爾;農(nóng)村巷7358號(hào);賓夕法尼亞州費(fèi)城

考茨,威廉H.;斯坦福研究所;加州門洛帕克

盧斯,R.D.;西117427號(hào);紐約州紐約市

麥凱,唐納德;物理系;倫敦大學(xué);倫敦,WC2,英格蘭

麥卡錫,約翰;達(dá)特茅斯學(xué)院;新罕布什爾州漢諾威

麥卡洛克,沃倫S.;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

梅爾扎克,Z.A.;密歇根大學(xué)數(shù)學(xué)系;安娜堡,密歇根州

明斯基,M.L.;紐伯里街112號(hào);馬薩諸塞州波士頓

莫特,特倫查德;麻省理工學(xué)院電氣工程系;馬薩諸塞州劍橋市

納什,約翰;高等研究院;新澤西州普林斯頓

紐厄爾,艾倫;卡內(nèi)基理工學(xué)院工業(yè)管理系;匹茲堡,賓夕法尼亞州

羅賓遜,亞伯拉罕;多倫多大學(xué)數(shù)學(xué)系;多倫多,安大略省,加拿大

羅切斯特,納撒尼爾;IBM公司工程研究實(shí)驗(yàn)室;紐約州波基普西市

羅杰斯,哈特利,小Jr;MIT數(shù)學(xué)系;馬薩諸塞州劍橋市

羅森布利斯,沃爾特;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

羅斯坦,杰羅姆;東卑爾根廣場(chǎng)21號(hào);新澤西州紅銀行

賽爾,大衛(wèi);IBM公司;麥迪遜大街590號(hào);紐約州紐約市

肖爾康,J.J.;麻省理工學(xué)院C-380林肯實(shí)驗(yàn)室;馬薩諸塞州列克星敦

沙普利,L.;蘭德公司;1700大街;加利福尼亞州圣莫尼卡

舒特澤伯格Schutzenberger,M.P;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

塞爾弗里奇,O.G.;麻省理工學(xué)院林肯實(shí)驗(yàn)室;馬薩諸塞州列克星敦

香農(nóng),C.E.;麻省理工學(xué)院R.L.E.;馬薩諸塞州劍橋市

夏皮羅,諾曼;蘭德公司;1700大街;加利福尼亞州圣莫尼卡

西蒙,赫伯特A.;工業(yè)管理系;卡內(nèi)基理工學(xué)院;匹茲堡,賓夕法尼亞州

索洛莫諾夫,雷蒙德J.;技術(shù)研究組;17聯(lián)合廣場(chǎng)西;紐約州紐約市

斯蒂爾,J.E.,上尉,美國(guó)空軍;B區(qū)8698盒;萊特-帕特森空軍基地;俄亥俄州

韋伯斯特,弗雷德里克;柯立芝大道62號(hào);馬薩諸塞州劍橋市

摩爾,E.F.;貝爾電話實(shí)驗(yàn)室;新澤西州默里希爾

凱梅尼,約翰G.;達(dá)特茅斯學(xué)院;新罕布什爾州漢諾威

    關(guān)于這份文件......

約翰麥卡錫

周四43日星期三19:48:31


原文如下,來自http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html


Next:About this document

A PROPOSAL FOR THEDARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College

M. L. Minsky, Harvard University

N. Rochester, I.B.M. Corporation

C.E. Shannon, Bell Telephone Laboratories

August 31, 1955

We propose that a 2 month, 10 man study of artificial intelligence be carried outduring the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Thestudy is to proceed on the basis of the conjecture that every aspect oflearning or any other feature of intelligence can in principle be so preciselydescribed that a machine can be made to simulate it. An attempt will be made tofind how to make machines use language, form abstractions and concepts, solvekinds of problems now reserved for humans, and improve themselves. We thinkthat a significant advance can be made in one or more of these problems if acarefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligenceproblem:

1. AutomaticComputers

If amachine can do a job, then an automatic calculator can be programmed to simulatethe machine. The speeds and memory capacities of present computers may beinsufficient to simulate many of the higher functions of the human brain, butthe major obstacle is not lack of machine capacity, but our inability to writeprograms taking full advantage of what we have.

2. HowCan a Computer be Programmed to Use a Language

It maybe speculated that a large part of human thought consists of manipulating wordsaccording to rules of reasoning and rules of conjecture. From this point ofview, forming a generalization consists of admitting a new word and some ruleswhereby sentences containing it imply and are implied by others. This idea hasnever been very precisely formulated nor have examples been worked out.

3. NeuronNets

How cana set of (hypothetical) neurons be arranged so as to form concepts.Considerable theoretical and experimental work has been done on this problem byUttley, Rashevsky and his group, Farley and Clark, Pitts and McCulloch, Minsky,Rochester and Holland, and others. Partial results have been obtained but theproblem needs more theoretical work.

4. Theoryof the Size of a Calculation

If weare given a well-defined problem (one for which it is possible to testmechanically whether or not a proposed answer is a valid answer) one way ofsolving it is to try all possible answers in order. This method is inefficient,and to exclude it one must have some criterion for efficiency of calculation.Some consideration will show that to get a measure of the efficiency of a calculationit is necessary to have on hand a method of measuring the complexity ofcalculating devices which in turn can be done if one has a theory of thecomplexity of functions. Some partial results on this problem have beenobtained by Shannon, and also by McCarthy.

5. Self-lmprovement

Probablya truly intelligent machine will carry out activities which may best bedescribed as self-improvement. Some schemes for doing this have been proposedand are worth further study. It seems likely that this question can be studiedabstractly as well.

6. Abstractions

Anumber of types of ``abstraction'' can be distinctly defined and several othersless distinctly. A direct attempt to classify these and to describe machinemethods of forming abstractions from sensory and other data would seemworthwhile.

7. Randomnessand Creativity

Afairly attractive and yet clearly incomplete conjecture is that the differencebetween creative thinking and unimaginative competent thinking lies in theinjection of a some randomness. The randomness must be guided by intuition tobe efficient. In other words, the educated guess or the hunch includecontrolled randomness in otherwise orderly thinking.

Inaddition to the above collectively formulated problems for study, we have askedthe individuals taking part to describe what they will work on. Statements bythe four originators of the project are attached.

Wepropose to organize the work of the group as follows.

Potentialparticipants will be sent copies of this proposal and asked if they would liketo work on the artificial intelligence problem in the group and if so what theywould like to work on. The invitations will be made by the organizing committeeon the basis of its estimate of the individual's potential contribution to thework of the group. The members will circulate their previous work and theirideas for the problems to be attacked during the months preceding the workingperiod of the group.

Duringthe meeting there will be regular research seminars and opportunity for themembers to work individually and in informal small groups.

The originators of this proposal are:

1. C.E. Shannon, Mathematician, Bell Telephone Laboratories. Shannon developedthe statistical theory of information, the application of propositional calculusto switching circuits, and has results on the efficient synthesis of switchingcircuits, the design of machines that learn, cryptography, and the theory ofTuring machines. He and J. McCarthy are co-editing an Annals of MathematicsStudy on ``The Theory of Automata'' .

2. M.L. Minsky, Harvard Junior Fellow in Mathematics and Neurology. Minsky hasbuilt a machine for simulating learning by nerve nets and has written a PrincetonPhD thesis in mathematics entitled, ``Neural Nets and the Brain Model Problem''which includes results in learning theory and the theory of random neural nets.

3. N. Rochester, Manager of Information Research,IBM Corporation, Poughkeepsie, New York. Rochester was concerned with thedevelopment of radar for seven years and computing machinery for seven years.He and another engineer were jointly responsible for the design of the IBM Type701 which is a large scale automatic computer in wide use today. He worked outsome of the automatic programming techniques which are in wide use today andhas been concerned with problems of how to get machines to do tasks whichpreviously could be done only by people. He has also worked on simulation ofnerve nets with particular emphasis on using computers to test theories inneurophysiology.

4. J. McCarthy, Assistant Professor of Mathematics,Dartmouth College. McCarthy has worked on a number of questions connected withthe mathematical nature of the thought process including the theory of Turingmachines, the speed of computers, the relation of a brain model to itsenvironment, and the use of languages by machines. Some results of this workare included in the forthcoming ``Annals Study'' edited by Shannon and McCarthy.McCarthy's other work has been in the field of differential equations.

TheRockefeller Foundation is being asked to provide financial support for theproject on the following basis:

1.Salaries of $1200 for each faculty level participant who is not being supportedby his own organization. It is expected, for example, that the participantsfrom Bell Laboratories and IBM Corporation will be supported by theseorganizations while those from Dartmouth and Harvard will require foundationsupport.

2. Salariesof $700 for up to two graduate students.

3.Railway fare for participants coming from a distance.

4. Rentfor people who are simultaneously renting elsewhere.

5.Secretarial expenses of $650, $500 for a secretary and $150 for duplicatingexpenses.

6.Organization expenses of $200. (Includes expense of reproducing preliminarywork by participants and travel necessary for organization purposes.

7.Expenses for two or three people visiting for a short time.

EstimatedExpenses

 6 salaries of 1200                         $7200

 2 salaries of 700                         &1400

 8 traveling and rent expenses averaging 300  &2400

 Secretarial and organizational expense         &850

 Additional traveling expenses                &600

 Contingencies                             &550

                                         &----&

                                        $13,500

PROPOSAL FOR RESEARCH BY C.E.SHANNON

I would like to devote my research to one or both of the topicslisted below. While I hope to do so, it is possible thatbecause of personal considerations I may not be able to attend for the entiretwo months. I, nevertheless, intend to be there for whatever time is possible.

1.Application of information theory concepts to computing machines and brainmodels. A basic problem in information theory is that of transmittinginformation reliably over a noisy channel. An analogous problem in computingmachines is that of reliable computing using unreliable elements. This problemhas been studies by von Neumann for Sheffer stroke elements and by Shannon andMoore for relays; but there are still many open questions. The problem forseveral elements, the development of concepts similar to channel capacity, thesharper analysis of upper and lower bounds on the required redundancy, etc. areamong the important issues. Another question deals with the theory ofinformation networks where information flows in many closed loops (ascontrasted with the simple one-way channel usually considered in communicationtheory). Questions of delay become very important in the closed loop case, anda whole new approach seems necessary. This would probably involve concepts suchas partial entropies when a part of the past history of a message ensemble isknown.

2. Thematched environment - brain model approach to automata. In general a machine oranimal can only adapt to or operate in a limited class of environments. Eventhe complex human brain first adapts to the simpler aspects of its environment,and gradually builds up to the more complex features. I propose to study thesynthesis of brain models by the parallel development of a series of matched(theoretical) environments and corresponding brain models which adapt to them.The emphasis here is on clarifying the environmental model, and representing itas a mathematical structure. Often in discussing mechanized intelligence, wethink of machines performing the most advanced human thought activities-provingtheorems, writing music, or playing chess. I am proposing here to start at thesimple and when the environment is neither hostile (merely indifferent) norcomplex, and to work up through a series of easy stages in the direction ofthese advanced activities.

PROPOSAL FOR RESEARCH BY M.L.MINSKY

It isnot difficult to design a machine which exhibits the following type oflearning. The machine is provided with input and output channels and aninternal means of providing varied output responses to inputs in such a waythat the machine may be ``trained'' by a ``trial and error'' process to acquireone of a range of input-output functions. Such a machine, when placed in anappropriate environment and given a criterior of ``success'' or ``failure'' canbe trained to exhibit ``goal-seeking'' behavior. Unless the machine is providedwith, or is able to develop, a way of abstracting sensory material, it canprogress through a complicated environment only through painfully slow steps,and in general will not reach a high level of behavior.

Now letthe criterion of success be not merely the appearance of a desired activitypattern at the output channel of the machine, but rather the performance of agiven manipulation in a given environment. Then in certain ways the motorsituation appears to be a dual of the sensory situation, and progress can bereasonably fast only if the machine is equally capable of assembling anensemble of ``motor abstractions'' relating its output activity to changes in theenvironment. Such ``motor abstractions'' can be valuable only if they relate tochanges in the environment which can be detected by the machine as changes inthe sensory situation, i.e., if they are related, through the structure of theenvironrnent, to the sensory abstractions that the machine is using.

I havebeen studying such systems for some time and feel that if a machine can bedesigned in which the sensory and motor abstractions, as they are formed, canbe made to satisfy certain relations, a high order of behavior may result.These relations involve pairing, motor abstractions with sensory abstractionsin such a way as to produce new sensory situations representing the changes inthe environment that might be expected if the corresponding motor act actuallytook place.

Theimportant result that would be looked for would be that the machine would tendto build up within itself an abstract model of the environment in which it isplaced. If it were given a problem, it could first explore solutions within theinternal abstract model of the environment and then attempt externalexperiments. Because of this preliminary internal study, these externalexperiments would appear to be rather clever, and the behavior would have to beregarded as rather ``imaginative''

A verytentative proposal of how this might be done is described in my dissertationand I intend to do further work in this direction. I hope that by summer 1956 Iwi11 have a model of such a machine fairly close to the stage of programming ina computer.

PROPOSAL FOR RESEARCH BY N. ROCHESTER

Originality in Machine Performance

Inwriting a program for an automatic calculator, one ordinarily provides themachine with a set of rules to cover each contingency which may arise andconfront the machine. One expects the machine to follow this set of rulesslavishly and to exhibit no originality or common sense. Furthermore one isannoyed only at himself when the machine gets confused because the rules he hasprovided for the machine are slightly contradictory. Finally, in writingprograms for machines, one sometimes must go at problems in a very laboriousmanner whereas, if the machine had just a little intuition or could makereasonable guesses, the solution of the problem could be quite direct. Thispaper describes a conjecture as to how to make a machine behave in a somewhatmore sophisticated manner in the general area suggested above. The paperdiscusses a problem on which I have been working sporadically for about fiveyears and which I wish to pursue further in the ArtificialIntelligence Project next summer.

The Process of Invention or Discovery

Livingin the environment of our culture provides us with procedures for solving manyproblems. Just how these procedures work is not yet clear but I shall discussthis aspect of the problem in terms of a model suggested by Craik . He suggests that mental action consists basically ofconstructing little engines inside the brain which can simulate and thuspredict abstractions relating to environment. Thus the solution of a problemwhich one already understands is done as follows:

1.    Theenvironment provides data from which certain abstractions are formed.

2.    Theabstractions together with certain internal habits or drives provide:

2.1 Adefinition of a problem in terms of desired condition to be achieved in thefuture, a goal.

2.2 Asuggested action to solve the problem.

2.3 Stimulationto arouse in the brain the engine which corresponds to this situation.

3.    Thenthe engine operates to predict what this environmental situation and theproposed reaction will lead to.

4.    Ifthe prediction corresponds to the goal the individual proceeds to act asindicated.

Theprediction will correspond to the goal if living in the environment of hisculture has provided the individual with the solution to the problem. Regardingthe individual as a stored program calculator, the program contains rules tocover this particular contingency.

For amore complex situation the rules might be more complicated. The rules mightcall for testing each of a set of possible actions to determine which providedthe solution. A still more complex set of rules might provide for uncertainty aboutthe environment, as for example in playing tic tac toe one must not onlyconsider his next move but the various possible moves of the environment (hisopponent).

Nowconsider a problem for which no individual in the culture has a solution andwhich has resisted efforts at solution. This might be a typical currentunsolved scientific problem. The individual might try to solve it and find thatevery reasonable action led to failure. In other words the stored programcontains rules for the solution of this problem but the rules are slightlywrong.

Inorder to solve this problem the individual will have to do something which isunreasonable or unexpected as judged by the heritage of wisdom accumulated bythe culture. He could get such behavior by trying different things at randombut such an approach would usually be too inefficient. There are usually toomany possible courses of action of which only a tiny fraction are acceptable.The individual needs a hunch, something unexpected but not altogether reasonable.Some problems, often those which are fairly new and have not resisted mucheffort, need just a little randomness. Others, often those which have longresisted solution, need a really bizarre deviation from traditional methods. Aproblem whose solution requires originality could yield to a method of solutionwhich involved randomness.

Interms of Craik's S model, the engine which should simulate the environment atfirst fails to simulate correctly. Therefore, it is necessary to try variousmodifications of the engine until one is found that makes it do what is needed.

Insteadof describing the problem in terms of an individual in his culture it couldhave been described in terms of the learning of an immature individual. Whenthe individual is presented with a problem outside the scope of his experiencehe must surmount it in a similar manner.

So farthe nearest practical approach using this method in machine solution ofproblems is an extension of the Monte Carlo method. In the usual problem which isappropriate for Monte Carlo there is a situation which is grossly misunderstoodand which has too many possible factors and one is unable to decide whichfactors to ignore in working out analytical solution. So the mathematician hasthe machine making a few thousand random experiments. The results of theseexperiments provide a rough guess as to what the answer may be. The extensionof the Monte Carlo Method is to use these results as a guide to determine whatto neglect in order to simplify the problem enough to obtain an approximateanalytical solution.

Itmight be asked why the method should include randomness. Why shouldn't themethod be to try each possibility in the order of the probability that thepresent state of knowledge would predict for its success? For the scientistsurrounded by the environment provided by his culture, it may be that onescientist alone would be unlikely to solve the problem in his life so theefforts of many are needed. If they use randomness they could all work at onceon it without complete duplication of effort. If they used system they wouldrequire impossibly detailed communication. For the individual maturing incompetition with other individuals the requirements of mixed strategy (usinggame theory terminology) favor randomness. For the machine, randomness willprobably be needed to overcome the shortsightedness and prejudices of theprogrammer. While the necessity for randomness has clearly not been proven,there is much evidence in its favor.

TheMachine With Randomness

Inorder to write a program to make an automatic calculator use originality itwill not do to introduce randomness without using forsight. If, for example,one wrote a program so that once in every 10,000 steps the calculator generateda random number and executed it as an instruction the result would probably bechaos. Then after a certain amount of chaos the machine would probably trysomething forbidden or execute a stop instruction and the experiment would beover.

Twoapproaches, however, appear to be reasonable. One of these is to find how thebrain manages to do this sort of thing and copy it. The other is to take someclass of real problems which require originality in their solution and attemptto find a way to write a program to solve them on an automatic calculator.Either of these approaches would probably eventually succeed. However, it isnot clear which would be quicker nor how many years or generations it wouldtake. Most of my effort along these lines has so far been on the former approachbecause I felt that it would be best to master all relevant scientificknowledge in order to work on such a hard problem, and I already was quiteaware of the current state of calculators and the art of programming them.

Thecontrol mechanism of the brain is clearly very different from the controlmechanism in today's calculators. One symptom of the difference is the mannerof failure. A failure of a calculator characteristically produces somethingquite unreasonable. An error in memory or in data transmission is as likely tobe in the most significant digit as in the least. An error in control can donearly anything. It might execute the wrong instruction or operate a wronginput-output unit. On the other hand human errors in speech are apt to resultin statements which almost make sense (consider someone who is almost asleep,slightly drunk, or slightly feverish). Perhaps the mechanism of the brain issuch that a slight error in reasoning introduces randomness in just the rightway. Perhaps the mechanism that controls serial order in behavior guides the random factor so as to improve the efficiency ofimaginative processes over pure randomness.

Somework has been done on simulating neuron nets on our automatic calculator. Onepurpose was to see if it would be thereby possible to introduce randomness inan appropriate fashion. It seems to have turned out that there are too manyunknown links between the activity of neurons and problem solving for thisapproach to work quite yet. The results have cast some light on the behavior ofnets and neurons, but have not yielded a way to solve problems requiringoriginality.

Animportant aspect of this work has been an effort to make the machine form andmanipulate concepts, abstractions, generalizations, and names. An attempt wasmade to test a theory3 of how the brain does it. The first set ofexperiments occasioned a revision of certain details of the theory. The secondset of experiments is now in progress. By next summer this work will befinished and a final report will have been written.

Myprogram is to try next to write a program to solve problems which are membersof some limited class of problems that require originality in their solution.It is too early to predict just what stage I will be in next summer, or just;how I will then define the immediate problem. However, the underlying problemwhich is described in this paper is what I intend to pursue. In a singlesentence the problem is: how can I make a machine which will exhibitoriginality in its solution of problems?

REFERENCES

1.K.J.W. Craik, The Nature of Explanation, Cambridge University Press,1943 (reprinted 1952), p. 92.

2. K.S.Lashley, ``The Problem of Serial Order in Behavior'', in Cerebral Mechanismin Behavior, the Hixon Symposium, edited by L.A. Jeffress, John Wiley &Sons, New York, pp. 112-146, 1951.

3. D.O. Hebb, The Organization of Behavior, John Wiley & Sons, New York,1949

PROPOSAL FOR RESEARCH BY JOHN MCCARTHY

Duringnext year and during the Summer Research Project on Artificial Intelligence, Ipropose to study the relation of language tointelligence. It seems clear that the direct application of trialand error methods to the relation between sensory data and motor activity willnot lead to any very complicated behavior. Rather it is necessary for the trialand error methods to be applied at a higher level of abstraction. The humanmind apparently uses language as its means of handling complicated phenomena.The trial and error processes at a higher level frequently take the form offormulating conjectures and testing them. The English language has a number ofproperties which every formal language described so far lacks.

1. Arguments in English supplemented byinformal mathematics can be concise.

2. English is universal in the sense thatit can set up any other language within English and then use that languagewhere it is appropriate.

3. The user of English can refer tohimself in it and formulate statements regarding his progress in solving theproblem he is working on.

4. In addition to rules of proof, Englishif completely formulated would have rules of conjecture .

Thelogical languages so far formulated have either been instruction lists to makecomputers carry out calculations specified in advance or else formalization ofparts of mathematics. The latter have been constructed so as:

1. to be easily described in informalmathematics,

2. to allow translation of statements frominformal mathematics into the language,

3. to make it easy to argue about whetherproofs of (???)

Noattempt has been made to make proofs in artificial languages as short asinformal proofs. It therefore seems to be desirable to attempt to construct anartificial language which a computer can be programmed to use on problemsrequiring conjecture and self-reference. It should correspond to English in thesense that short English statements about the given subject matter should haveshort correspondents in the language and so should short arguments orconjectural arguments. I hope to try to formulate a language having theseproperties and in addition to contain the notions of physical object, event,etc., with the hope that using this language it will be possible to program amachine to learn to play games well and do other tasks.

PEOPLE INTERESTED IN THE ARTIFICIAL INTELLIGENCE PROBLEM

Thepurpose of the list is to let those on it know who is interested in receivingdocuments on the problem. The people on the 1ist wlll receive copies of thereport of the Dartmouth Summer Project on Artificial Intelligence. [1996 note:There was no report.]

Thelist consists of people who particlpated in or visited the Dartmouth SummerResearch Project on Artificlal Intelligence, or who are known to be interestedin the subject. It is being sent to the people on the 1ist and to a few others.

For thepresent purpose the artificial intelligence problem is taken to be that ofmaking a machine behave in ways that would be called intelligent if a humanwere so behaving.

Arevised list will be issued soon, so that anyone else interested in getting onthe list or anyone who wishes to change his address on it should write to:

John McCarthy

Dapartment of Mathematics

Dartmouth College

Hanover, NH

[1996note: Not all of these people came to the Dartmouth conference. They werepeople we thought might be interested in Artificial Intelligence.] (Mr. Qinlongji notes 47 p.)

The list consists of:

Adelson,Marvin

HughesAircraft Company, Airport Station, Los Angeles, CA

Ashby, W.R.

BarnwoodHouse, Gloucester, England

Backus,John

IBMCorporation, 590 Madison Avenue, New York, NY

Bernstein,Alex

IBMCorporation, 590 Madison Avenue, New York, NY

Bigelow,J. H.

Institutefor Advanced Studies, Princeton, NJ

Elias,Peter

R. L.E., MIT, Cambridge, MA

Duda, W.L.

IBMResearch Laboratory, Poughkeepsie, NY

Davies,Paul M.

1317 C. 18thStreet, Los Angeles, CA.

Fano, R.M.

R. L.E., MIT, Cambridge, MA

Farley,B. G.

324 ParkAvenue, Arlington, MA.

Galanter,E. H.

Universityof Pennsylvania, Philadelphia, PA

Gelernter,Herbert

IBMResearch, Poughkeepsie, NY

Glashow,Harvey A.

1102Olivia Street, Ann Arbor, MI.

Goertzal,Herbert

330 West11th Street, New York, New York

Hagelbarger,D.

BellTelephone Laboratories, Murray Hill, NJ

Miller,George A.

MemorialHall, Harvard University, Cambridge, MA.

Harmon,Leon D.

BellTelephone Laboratories, Murray Hill, NJ

Holland,John H.

E. R. I., University of Michigan

AnnArbor, MI

Holt,Anatol, 7358 Rural Lane, Philadelphia, PA

Kautz,William H.

StanfordResearch Institute, Menlo Park, CA

Luce, R.D.

427 West117th Street, New York, NY

MacKay,Donald

Departmentof Physics, University of London, London, WC2, England

McCarthy,John

DartmouthCollege, Hanover, NH

McCulloch,Warren S.

R.L.E., M.I.T., Cambridge, MA

Melzak,Z. A.

MathematicsDepartment, University of Michigan

AnnArbor, MI

Minsky,M. L. , 112 Newbury Street, Boston, MA

More,Trenchard

Departmentof Electrical Engineering, MIT, Cambridge, MA

Nash, John

Institutefor Advanced Studies, Princeton, NJ

Newell,Allen

Departmentof Industrial Administration, Carnegie Institute of Technology, Pittsburgh, PA

Robinson,Abraham

Departmentof Mathematics, University of Toronto, Toronto, Ontario, Canada

Rochester,Nathaniel

EngineeringResearch Laboratory, IBM Corporation, Poughkeepsie, NY

Rogers,Hartley, Jr.

Departmentof Mathematics, MIT, Cambridge, MA.

Rosenblith,Walter

R.L.E.,M.I.T. , Cambridge, MA.

Rothstein,Jerome

21 EastBergen Place, Red Bank, NJ

Sayre,David

IBMCorporation, 590 Madison Avenue, New York, NY

Schorr-Kon,J.J.

C-380Lincoln Laboratory, MIT, Lexington, MA

Shapley,L.

RandCorporation, 1700 Main Street, Santa Monica, CA

Schutzenberger,M.P.

R.L.E.,M.I.T. , Cambridge, MA

Selfridge,O. G.

LincolnLaboratory, M.I.T. , Lexington, MA

Shannon,C. E.

R.L.E.,M.I.T. , Cambridge, MA

Shapiro,Norman

RandCorporation, 1700 Main Street, Santa Monica, CA

Simon,Herbert A.

Departmentof Industrial Administration, Carnegie Institute of Technology, Pittsburgh, PA

Solomonoff,Raymond J.

TechnicalResearch Group, 17 Union Square West, New York, NY

Steele,J. E., Capt. USAF

Area B.,Box 8698, Wright-Patterson AFB, Ohio

Webster,Frederick

62Coolidge Avenue, Cambridge, MA

Moore, E.F.

BellTelephone Laboratory, Murray Hill, NJ

Kemeny,John G.

DartmouthCollege, Hanover, NH


[Mr. Qin notes: 13 pages original paper (PDF).]

Aboutthis document ...

Next:Aboutthis document

John McCarthy

Wed Apr 3 19:48:31 PST 1996


素材(880)

1. J. McCarthy, Dartmouth College; M. L. Minsky,Harvard University; N. Rochester, I.B.M. Corporation; C.E. Shannon, BellTelephone Laboratories. A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ONARTIFICIAL INTELLIGENCE. [EB/OL], stanford, http://jmc.stanford.edu/articles/dartmouth.htmll, August 31, 1955, visit date: 2019-06-07

2. J. McCarthy, Dartmouth College; M. L. Minsky,Harvard University; N. Rochester, I.B.M. Corporation; C.E. Shannon, BellTelephone Laboratories. A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ONARTIFICIAL INTELLIGENCE. [EB/OL], stanford, http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html,August 31, 1955, visit date: 2019-06-07

3. 秦隴紀(jì). 人工智能起源與發(fā)展正史. [EB/OL], 科學(xué)Sciences. http://weixin.qq.com/, 2019-06-06, visit date: 2019-06-07

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
人工智能簡(jiǎn)史
AI簡(jiǎn)史:從1308年到2016年 人工智能緩步走來
人工智能如何強(qiáng)化我們的記憶、工作、及社交生活(中英 音頻)
警惕人工智能的美麗新世界
人工智能的本源與展望:從亞里士多德到平行智能
了解人工智能,這15本書你一定要讀
更多類似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服