三角函數(shù)是比較困難的一個(gè)章節(jié),對于同學(xué)們來說不是很好掌握,今天極客數(shù)學(xué)幫奉上關(guān)于三角函數(shù)的誘導(dǎo)公式大全。希望能對大家學(xué)習(xí)三角函數(shù)有所幫助。
常用的誘導(dǎo)公式有以下幾組:
公式一:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式四:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做題時(shí),將a看成銳角來做會比較好做。
規(guī)律總結(jié)
上面這些誘導(dǎo)公式可以概括為:
對于π/2*k±α(k∈Z)的三角函數(shù)值,
①當(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;
②當(dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號。
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數(shù)值的符號可記憶
水平誘導(dǎo)名不變;符號看象限。
各種三角函數(shù)在四個(gè)象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.
這十二字口訣的意思就是說:
第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;
第二象限內(nèi)只有正弦是“+”,其余全部是“-”;
第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;
第四象限內(nèi)只有余弦是“+”,其余全部是“-”.
上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦
同角三角函數(shù)的基本關(guān)系式
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin2(α)+cos2(α)=1
1+tan2(α)=sec2(α)
1+cot2(α)=csc2(α)
兩角和差公式
兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan2α=2tanα/[1-tan2(α)]
半角公式
半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)
sin2(α/2)=(1-cosα)/2
cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
萬能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
和差化積公式
三角函數(shù)的和差化積公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
積化和差公式
三角函數(shù)的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
練習(xí)題來啦!同學(xué)們根據(jù)自己學(xué)習(xí)有關(guān)于三角函數(shù)的誘導(dǎo)公式來做一做練習(xí)吧。看看有哪些公式是自己還不能熟練應(yīng)用的。
計(jì)算題
sin30°+cos60°-cot60°*tan30°
應(yīng)用題:
如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC。
(1)求證:AC=BD
(2)若sinC=12/13,求AD的長。
答案:
計(jì)算題:-1
應(yīng)用題:
聯(lián)系客服