數(shù)據(jù)倉庫,數(shù)據(jù)庫或者其它信息庫中隱藏著許多可以為商業(yè)、科研等活動(dòng)的決策提供所需要的知識(shí)。分類與預(yù)測(cè)是兩種數(shù)據(jù)分析形式,它們可以用來抽取能夠描述重要數(shù)據(jù)集合或預(yù)測(cè)未來數(shù)據(jù)趨勢(shì)的模型。分類方法(Classification)用于預(yù)測(cè)數(shù)據(jù)對(duì)象的離散類別(Categorical Label);預(yù)測(cè)方法(Prediction )用于預(yù)測(cè)數(shù)據(jù)對(duì)象的連續(xù)取值。 分類技術(shù)在很多領(lǐng)域都有應(yīng)用,例如可以通過客戶分類構(gòu)造一個(gè)分類模型來對(duì)銀行貸款進(jìn)行風(fēng)險(xiǎn)評(píng)估;當(dāng)前的市場(chǎng)營銷中很重要的一個(gè)特點(diǎn)是強(qiáng)調(diào)客戶細(xì)分??蛻纛悇e分析的功能也在于此,采用數(shù)據(jù)挖掘中的分類技術(shù),可以將客戶分成不同的類別,比如呼叫中心設(shè)計(jì)時(shí)可以分為:呼叫頻繁的客戶、偶然大量呼叫的客戶、穩(wěn)定呼叫的客戶、其他,幫助呼叫中心尋找出這些不同種類客戶之間的特征,這樣的分類模型可以讓用戶了解不同行為類別客戶的分布特征;其他分類應(yīng)用如文獻(xiàn)檢索和搜索引擎中的自動(dòng)文本分類技術(shù);安全領(lǐng)域有基于分類技術(shù)的入侵檢測(cè)等等。機(jī)器學(xué)習(xí)、專家系統(tǒng)、統(tǒng)計(jì)學(xué)和神經(jīng)網(wǎng)絡(luò)等領(lǐng)域的研究人員已經(jīng)提出了許多具體的分類預(yù)測(cè)方法。下面對(duì)分類流程作個(gè)簡(jiǎn)要描述: 訓(xùn)練:訓(xùn)練集——>特征選取——>訓(xùn)練——>分類器 分類:新樣本——>特征選取——>分類——>判決 最初的數(shù)據(jù)挖掘分類應(yīng)用大多都是在這些方法及基于內(nèi)存基礎(chǔ)上所構(gòu)造的算法。目前數(shù)據(jù)挖掘方法都要求具有基于外存以處理大規(guī)模數(shù)據(jù)集合能力且具有可擴(kuò)展能力。下面對(duì)幾種主要的分類方法做個(gè)簡(jiǎn)要介紹: (1)決策樹 決策樹歸納是經(jīng)典的分類算法。它采用自頂向下遞歸的各個(gè)擊破方式構(gòu)造決策樹。樹的每一個(gè)結(jié)點(diǎn)上使用信息增益度量選擇測(cè)試屬性。可以從生成的決策樹中提取規(guī)則。 (2) KNN法(K-Nearest Neighbor) KNN法即K最近鄰法,最初由Cover和Hart于1968年提出的,是一個(gè)理論上比較成熟的方法。該方法的思路非常簡(jiǎn)單直觀:如果一個(gè)樣本在特征空間中的k個(gè)最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個(gè)類別,則該樣本也屬于這個(gè)類別。該方法在定類決策上只依據(jù)最鄰近的一個(gè)或者幾個(gè)樣本的類別來決定待分樣本所屬的類別。 KNN方法雖然從原理上也依賴于極限定理,但在類別決策時(shí),只與極少量的相鄰樣本有關(guān)。因此,采用這種方法可以較好地避免樣本的不平衡問題。另外,由于KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對(duì)于類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。 該方法的不足之處是計(jì)算量較大,因?yàn)閷?duì)每一個(gè)待分類的文本都要計(jì)算它到全體已知樣本的距離,才能求得它的K個(gè)最近鄰點(diǎn)。目前常用的解決方法是事先對(duì)已知樣本點(diǎn)進(jìn)行剪輯,事先去除對(duì)分類作用不大的樣本。另外還有一種Reverse KNN法,能降低KNN算法的計(jì)算復(fù)雜度,提高分類的效率。 該算法比較適用于樣本容量比較大的類域的自動(dòng)分類,而那些樣本容量較小的類域采用這種算法比較容易產(chǎn)生誤分。 (3) SVM法 SVM法即支持向量機(jī)(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相對(duì)優(yōu)良的性能指標(biāo)。該方法是建立在統(tǒng)計(jì)學(xué)習(xí)理論基礎(chǔ)上的機(jī)器學(xué)習(xí)方法。通過學(xué)習(xí)算法,SVM可以自動(dòng)尋找出那些對(duì)分類有較好區(qū)分能力的支持向量,由此構(gòu)造出的分類器可以最大化類與類的間隔,因而有較好的適應(yīng)能力和較高的分準(zhǔn)率。該方法只需要由各類域的邊界樣本的類別來決定最后的分類結(jié)果。 支持向量機(jī)算法的目的在于尋找一個(gè)超平面H(d),該超平面可以將訓(xùn)練集中的數(shù)據(jù)分開,且與類域邊界的沿垂直于該超平面方向的距離最大,故SVM法亦被稱為最大邊緣(maximum margin)算法。待分樣本集中的大部分樣本不是支持向量,移去或者減少這些樣本對(duì)分類結(jié)果沒有影響,SVM法對(duì)小樣本情況下的自動(dòng)分類有著較好的分類結(jié)果。 (4) VSM法 VSM法即向量空間模型(Vector Space Model)法,由Salton等人于60年代末提出。這是最早也是最出名的信息檢索方面的數(shù)學(xué)模型。其基本思想是將文檔表示為加權(quán)的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通過計(jì)算文本相似度的方法來確定待分樣本的類別。當(dāng)文本被表示為空間向量模型的時(shí)候,文本的相似度就可以借助特征向量之間的內(nèi)積來表示。 在實(shí)際應(yīng)用中,VSM法一般事先依據(jù)語料庫中的訓(xùn)練樣本和分類體系建立類別向量空間。當(dāng)需要對(duì)一篇待分樣本進(jìn)行分類的時(shí)候,只需要計(jì)算待分樣本和每一個(gè)類別向量的相似度即內(nèi)積,然后選取相似度最大的類別作為該待分樣本所對(duì)應(yīng)的類別。 由于VSM法中需要事先計(jì)算類別的空間向量,而該空間向量的建立又很大程度的依賴于該類別向量中所包含的特征項(xiàng)。根據(jù)研究發(fā)現(xiàn),類別中所包含的非零特征項(xiàng)越多,其包含的每個(gè)特征項(xiàng)對(duì)于類別的表達(dá)能力越弱。因此,VSM法相對(duì)其他分類方法而言,更適合于專業(yè)文獻(xiàn)的分類。 (5) Bayes法 Bayes法是一種在已知先驗(yàn)概率與類條件概率的情況下的模式分類方法,待分樣本的分類結(jié)果取決于各類域中樣本的全體。 設(shè)訓(xùn)練樣本集分為M類,記為C={c1,…,ci,…cM},每類的先驗(yàn)概率為P(ci),i=1,2,…,M。當(dāng)樣本集非常大時(shí),可以認(rèn)為P(ci)=ci類樣本數(shù)/總樣本數(shù)。對(duì)于一個(gè)待分樣本X,其歸于cj類的類條件概率是P(X/ci),則根據(jù)Bayes定理,可得到cj類的后驗(yàn)概率P(ci/X): P(ci/x)=P(x/ci)·P(ci)/P(x)(1) 若P(ci/X)=MaxjP(cj/X),i=1,2,…,M,j=1,2,…,M,則有x∈ci(2) 式(2)是最大后驗(yàn)概率判決準(zhǔn)則,將式(1)代入式(2),則有: 若P(x/ci)P(ci)=Maxj[P(x/cj)P(cj)],i=1,2,…,M,j=1,2,…,M,則x∈ci 這就是常用到的Bayes分類判決準(zhǔn)則。經(jīng)過長期的研究,Bayes分類方法在理論上論證得比較充分,在應(yīng)用上也是非常廣泛的。 Bayes方法的薄弱環(huán)節(jié)在于實(shí)際情況下,類別總體的概率分布和各類樣本的概率分布函數(shù)(或密度函數(shù))常常是不知道的。為了獲得它們,就要求樣本足夠大。另外,Bayes法要求表達(dá)文本的主題詞相互獨(dú)立,這樣的條件在實(shí)際文本中一般很難滿足,因此該方法往往在效果上難以達(dá)到理論上的最大值。 (6)神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)分類算法的重點(diǎn)是構(gòu)造閾值邏輯單元,一個(gè)值邏輯單元是一個(gè)對(duì)象,它可以輸入一組加權(quán)系數(shù)的量,對(duì)它們進(jìn)行求和,如果這個(gè)和達(dá)到或者超過了某個(gè)閾值,輸出一個(gè)量。如有輸入值X1, X2, ..., Xn 和它們的權(quán)系數(shù):W1, W2, ..., Wn,求和計(jì)算出的 Xi*Wi ,產(chǎn)生了激發(fā)層 a = (X1 * W1)+(X2 * W2)+...+(Xi * Wi)+...+ (Xn * Wn),其中Xi 是各條記錄出現(xiàn)頻率或其他參數(shù),Wi是實(shí)時(shí)特征評(píng)估模型中得到的權(quán)系數(shù)。神經(jīng)網(wǎng)絡(luò)是基于經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化原則的學(xué)習(xí)算法,有一些固有的缺陷,比如層數(shù)和神經(jīng)元個(gè)數(shù)難以確定,容易陷入局部極小,還有過學(xué)習(xí)現(xiàn)象,這些本身的缺陷在SVM算法中可以得到很好的解決。 |