中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
高中高二數(shù)學(xué)下冊(cè)復(fù)習(xí)教學(xué)知識(shí)點(diǎn)歸納總結(jié),期末測(cè)試試題習(xí)題大全

 

 

 

1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y) 那么 向量OP=x向量i+y向量j
|向量OP|=根號(hào)(x平方+y平方)
3.P1(x1,y1) P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
= ————————————————————
根號(hào)(x1平方+y1平方)*根號(hào)(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方

 

 

高二數(shù)學(xué)公式之拋物線

1.拋物線的定義摘

  定義:平面內(nèi)到一定點(diǎn)(F)和一條定直線(l)的距離相等的點(diǎn)的軌跡叫拋物線。這個(gè)定點(diǎn)F叫拋物線的焦點(diǎn),這條定直線l叫拋物線的準(zhǔn)線。

  需強(qiáng)調(diào)的是,點(diǎn)F不在直線l上,否則軌跡是過點(diǎn)F且與l垂直的直線,而不是拋物線。

  2.拋物線的方程

  對(duì)于以上四種方程:應(yīng)注意掌握它們的規(guī)律:曲線的對(duì)稱軸是哪個(gè)軸,方程中的該項(xiàng)即為一次項(xiàng);一次項(xiàng)前面是正號(hào)則曲線的開口方向向x軸或y軸的正方向;一次項(xiàng)前面是負(fù)號(hào)則曲線的開口方向向x軸或y軸的負(fù)方向。

  3.拋物線的幾何性質(zhì)

  以標(biāo)準(zhǔn)方程y2=2px為例

 ?。?)范圍:x≥0;

 ?。?)對(duì)稱軸:對(duì)稱軸為y=0,由方程和圖像均可以看出;

 ?。?)頂點(diǎn):O(0,0),注:拋物線亦叫無心圓錐曲線(因?yàn)闊o中心);

  (4)離心率:e=1,由于e是常數(shù),所以拋物線的形狀變化是由方程中的p決定的;

 ?。?)焦半徑公式:

  拋物線上一點(diǎn)P(x1,y1),F(xiàn)為拋物線的焦點(diǎn),對(duì)于四種拋物線的焦半徑公式分別為(p>0):

 ?。?)焦點(diǎn)弦長(zhǎng)公式:

  對(duì)于過拋物線焦點(diǎn)的弦長(zhǎng),可以用焦半徑公式推導(dǎo)出弦長(zhǎng)公式。設(shè)過拋物線y2=2px(p>O)的焦點(diǎn)F的弦為AB,A(x1,y1),B(x2,y2),AB的傾斜角為α,則有

 ?、質(zhì)AB|=x1+x2+p

  以上兩公式只適合過焦點(diǎn)的弦長(zhǎng)的求法,對(duì)于其它的弦,只能用“弦長(zhǎng)公式”來求。

 ?。?)直線與拋物線的關(guān)系:

  直線與拋物線方程聯(lián)立之后得到一元二次方程:ax2+bx+c=0,當(dāng)a≠0時(shí),兩者的位置關(guān)系的判定和橢圓、雙曲線相同,用判別式法即可;但如果a=0,則直線是拋物線的對(duì)稱軸或是和對(duì)稱軸平行的直線,此時(shí),直線和拋物線相交,但只有一個(gè)公共點(diǎn)。

 ?。?)拋物線y2=2px的切線:

 ?、偃绻c(diǎn)P(x0,y0)在拋物線上,則y0y=p(x+x0);

 ?。?0)參數(shù)方程

  理解參數(shù)方程的概念,了解某些常用參數(shù)方程中參數(shù)的幾何意義或物理意義,掌握參數(shù)方程與普通方程的互化方法.會(huì)根據(jù)給出的參數(shù),依據(jù)條件建立參數(shù)方程.

 

 1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
先給這些吧!畢竟三角函數(shù)變換最復(fù)雜.
這是我自己總結(jié)的,好累呀!(當(dāng)年自己都證過)

 

 

拋物線:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0時(shí)開口向上
a < 0時(shí)開口向下
c = 0時(shí)拋物線經(jīng)過原點(diǎn)
b = 0時(shí)拋物線對(duì)稱軸為y軸
還有頂點(diǎn)式y(tǒng) = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長(zhǎng)=2(pi)r
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長(zhǎng)計(jì)算公式
橢圓周長(zhǎng)公式:L=2πb+4(a-b)
橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。
(二)橢圓面積計(jì)算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢圓形物體 體積計(jì)算公式橢圓 的 長(zhǎng)半徑*短半徑*PAI*高
三角函數(shù):
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達(dá)定理
判別式 b2-4a=0 注:方程有相等的兩實(shí)根
b2-4ac>0 注:方程有一個(gè)實(shí)根
b2-4ac<0 注:方程有共軛復(fù)數(shù)根
公式分類 公式表達(dá)式
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h
正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l
弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng)
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
圖形周長(zhǎng) 面積 體積公式
長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2
正方形的周長(zhǎng)=邊長(zhǎng)×4
長(zhǎng)方形的面積=長(zhǎng)×寬
正方形的面積=邊長(zhǎng)×邊長(zhǎng)
三角形的面積
已知三角形底a,高h(yuǎn),則S=ah/2
已知三角形三邊a,b,c,半周長(zhǎng)p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r
則三角形面積=(a+b+c)r/2
設(shè)三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC
| e f 1 |
選區(qū)取最好按逆時(shí)針順序從右上角開始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對(duì)值就可以了,不會(huì)影響三角形面積的大小!】
秦九韶三角形中線面積公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc為三角形的中線長(zhǎng).
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長(zhǎng)=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長(zhǎng)方體的表面積=
(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2
長(zhǎng)方體的體積 =長(zhǎng)×寬×高
正方體的表面積=棱長(zhǎng)×棱長(zhǎng)×6
正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)
圓柱的側(cè)面積=底面圓的周長(zhǎng)×高
圓柱的表面積=上下底面面積+側(cè)面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長(zhǎng)方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號(hào) 周長(zhǎng)C和面積S
正方形 a—邊長(zhǎng) C=4a
S=a2
長(zhǎng)方形 a和b-邊長(zhǎng) C=2(a+b)
S=ab
三角形 a,b,c-三邊長(zhǎng)
h-a邊上的高
s-周長(zhǎng)的一半
A,B,C-內(nèi)角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯(cuò)角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯(cuò)角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18 推論1 直角三角形的兩個(gè)銳角互余
19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24 推論(aas) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理(sss) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35 推論1 三個(gè)角都相等的三角形是等邊三角形
36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形
48定理 四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51推論 任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等
53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角
61矩形性質(zhì)定理2 矩形的對(duì)角線相等
62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形
63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1 菱形的四條邊都相等
65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66菱形面積=對(duì)角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

回答人的補(bǔ)充 2009-10-02 20:52 75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形
77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(asa)
92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93 判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(sas)
94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(sss)
95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比
98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值

 

1.平面上兩條直線的關(guān)系有:平行,相交(垂直)
2.平面上兩條直線垂直的條件:相交(不相交哪來的垂直)相交線成90°
3.勾股定理或|a×x+b×y+c|÷√a^2+b^2
4.圓的標(biāo)準(zhǔn)方程:(x-a)^2+(y-b)^2=r^2 其中(a,b)是圓心坐標(biāo)
圓的一般方程: x^2+y^2+D*x+E*y+F=0 注:D^2+E^2-4*F>0
圓與直線的關(guān)系:相交,相切,相離 (取決于直線到圓心的距離與半徑的大小的比較)
5.橢圓的標(biāo)準(zhǔn)方程取決于焦點(diǎn)所在的坐標(biāo)軸
①焦點(diǎn)在x軸時(shí),標(biāo)準(zhǔn)方程為:x^2/a^2+y^2/b^2=1 (a>b)
②焦點(diǎn)在y軸時(shí),標(biāo)準(zhǔn)方程為:y^2/a^2+x^2/b^2=1 (a>b)
6.雙曲線的方程為:X^2/a^2-Y^2/b^2=1 (a>0,b>0)
7.拋物線的標(biāo)準(zhǔn)方程為:
右開口拋物線:y^2=2*p*X
左開口拋物線:y^2=-2*p*X
上開口拋物線:y=x^2/2*p
下開口拋物線:y=-x^2/2*P
            
1.平面上兩條直線的位置關(guān)系有(平行)和(相交)
2.[1] 兩直線垂直的條件
如果兩條直線的斜率為k1和k2,那么這兩條直線垂直的充要條件是k1·k2=-1
[2] 對(duì)兩直線垂直的條件
(1)前述兩直線垂直的充要條件僅考慮了兩直線都有斜率的情況,如果一直線不存在斜率,則兩直線垂直時(shí),另一直線的斜率必然為零.
(2)兩直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是:A1A2+B1B2=0.

3.y=kx+b
kx-y+b=0
點(diǎn)A到直線的距離:
|ka-b+b|/√(k^2+1^2)

點(diǎn)P(x1,y1)到直線Ax+By+C=0的距離公式是d=|Ax1+By1+C|/√A^2+B^2

4.圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
直線標(biāo)準(zhǔn)方程:Ax+By+C=0
點(diǎn)到直線距離公式:d=|Ax0+By0+C|/根號(hào)(A2+B2)
圓與直線的關(guān)系:d<1,相交;d=1,相切;d>1,相離

5. 橢圓的標(biāo)準(zhǔn)方程有兩種,取決于焦點(diǎn)所在的坐標(biāo)軸:
  1)焦點(diǎn)在X軸時(shí),標(biāo)準(zhǔn)方程為:x^2/a^2+y^2/b^2=1 (a>b)
  2)焦點(diǎn)在Y軸時(shí),標(biāo)準(zhǔn)方程為:x^2/b^2+y^2/a^2=1 (a>b)

6. X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)

7..拋物線的標(biāo)準(zhǔn)方程
  右開口拋物線:y^2=2px
  左開口拋物線:y^2=-2px
  上開口拋物線:y=x^2/2p
  下開口拋物線:y=-x^2/2p
            

 

 

現(xiàn)為大家整理出高二數(shù)學(xué)公式大全,包含了很多高二數(shù)學(xué)所學(xué)到和經(jīng)常應(yīng)用到得數(shù)學(xué)公式,可以整理并記錄下來,經(jīng)??纯矗堰@些公式記在腦海里,以后考試答題可以直接用嘍。

1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y) 那么 向量OP=x向量i+y向量j
|向量OP|=根號(hào)(x平方+y平方)
3.P1(x1,y1) P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
= ————————————————————
根號(hào)(x1平方+y1平方)*根號(hào)(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
三角函數(shù)公式:

            

 

 

1、 每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù)

2、 1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù)

3、 速度×?xí)r間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度

4、 單價(jià)×數(shù)量=總價(jià) 總價(jià)÷單價(jià)=數(shù)量 總價(jià)÷數(shù)量=單價(jià)

5、 工作效率×工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間工作總量÷工作時(shí)間=工作效率

6、 加數(shù)+加數(shù)=和 和-(一個(gè)加數(shù))=另一個(gè)加數(shù)

7、 被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)

8、 因數(shù)×因數(shù)=積 積÷一個(gè)因數(shù)=另一個(gè)因數(shù)

9、 被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)

小學(xué)數(shù)學(xué)圖形計(jì)算公式

1 、正方形 C周長(zhǎng) S面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)×4 C=4a 面積=邊長(zhǎng)×邊長(zhǎng) S=a×a

2 、正方體 V:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 S表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) V=a×a×a

3 、長(zhǎng)方形

C周長(zhǎng) S面積 a邊長(zhǎng)

周長(zhǎng)=(長(zhǎng)+寬)×2

C=2(a+b)

面積=長(zhǎng)×寬

S=ab

4 、長(zhǎng)方體

V:體積 s:面積 a:長(zhǎng) b: 寬 h:高

(1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長(zhǎng)×寬×高

V=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

S面積 C周長(zhǎng) ∏ d=直徑 r=半徑

(1)周長(zhǎng)=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng)

(1)側(cè)面積=底面周長(zhǎng)×高

(2)表面積=側(cè)面積+底面積×2

(3)體積=底面積×高

(4)體積=側(cè)面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

總數(shù)÷總份數(shù)=平均數(shù)

和差問題的公式

(和+差)÷2=大數(shù)

(和-差)÷2=小數(shù)

和倍問題

和÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或者 和-小數(shù)=大數(shù))

差倍問題

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

(或 小數(shù)+差=大數(shù))

植樹問題

1 非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那么:

株數(shù)=段數(shù)+1=全長(zhǎng)÷株距-1

全長(zhǎng)=株距×(株數(shù)-1)

株距=全長(zhǎng)÷(株數(shù)-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么:

株數(shù)=段數(shù)=全長(zhǎng)÷株距

全長(zhǎng)=株距×株數(shù)

株距=全長(zhǎng)÷株數(shù)

⑶如果在非封閉線路的兩端都不要植樹,那么:

株數(shù)=段數(shù)-1=全長(zhǎng)÷株距-1

全長(zhǎng)=株距×(株數(shù)+1)

株距=全長(zhǎng)÷(株數(shù)+1)

2 封閉線路上的植樹問題的數(shù)量關(guān)系如下

株數(shù)=段數(shù)=全長(zhǎng)÷株距

全長(zhǎng)=株距×株數(shù)

株距=全長(zhǎng)÷株數(shù)

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數(shù)

(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)

(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)

相遇問題

相遇路程=速度和×相遇時(shí)間

相遇時(shí)間=相遇路程÷速度和

速度和=相遇路程÷相遇時(shí)間

追及問題

追及距離=速度差×追及時(shí)間

追及時(shí)間=追及距離÷速度差

速度差=追及距離÷追及時(shí)間

流水問題

順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2

水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質(zhì)的重量+溶劑的重量=溶液的重量

溶質(zhì)的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質(zhì)的重量

溶質(zhì)的重量÷濃度=溶液的重量

利潤(rùn)與折扣問題

利潤(rùn)=售出價(jià)-成本

利潤(rùn)率=利潤(rùn)÷成本×100%=(售出價(jià)÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實(shí)際售價(jià)÷原售價(jià)×100%(折扣<1)

利息=本金×利率×?xí)r間

稅后利息=本金×利率×?xí)r間×(1-20%)

長(zhǎng)度單位換算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面積單位換算

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

體(容)積單位換算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量單位換算

1噸=1000 千克

1千克=1000克

1千克=1公斤

人民幣單位換算

1元=10角

1角=10分

1元=100分

時(shí)間單位換算

1世紀(jì)=100年 1年=12月

大月(31天)有:18 月

小月(30天)的有:49 月

平年2月28天, 閏年2月29天

平年全年365天, 閏年全年366天

1日=24小時(shí) 1時(shí)=60分

1分=60秒 1時(shí)=3600秒

小學(xué)數(shù)學(xué)幾何形體周長(zhǎng) 面積 體積計(jì)算公式

1、長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2 C=(a+b)×2

2、正方形的周長(zhǎng)=邊長(zhǎng)×4 C=4a

3、長(zhǎng)方形的面積=長(zhǎng)×寬 S=ab

4、正方形的面積=邊長(zhǎng)×邊長(zhǎng) S=a.a= a

5、三角形的面積=底×高÷2 S=ah÷2

6、平行四邊形的面積=底×高 S=ah

7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2

8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

9、圓的周長(zhǎng)=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

10、圓的面積=圓周率×半徑×半徑

常見的初中數(shù)學(xué)公式

1 過兩點(diǎn)有且只有一條直線

2 兩點(diǎn)之間線段最短

3 同角或等角的補(bǔ)角相等

4 同角或等角的余角相等

5 過一點(diǎn)有且只有一條直線和已知直線垂直

6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯(cuò)角相等,兩直線平行

11 同旁內(nèi)角互補(bǔ),兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯(cuò)角相等

14 兩直線平行,同旁內(nèi)角互補(bǔ)

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

18 推論1 直角三角形的兩個(gè)銳角互余

19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35 推論1 三個(gè)角都相等的三角形是等邊三角形

36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

48定理 四邊形的內(nèi)角和等于360°

49四邊形的外角和等于360°

50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51推論 任意多邊的外角和等于360°

52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等

53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分

56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形

60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角

61矩形性質(zhì)定理2 矩形的對(duì)角線相等

62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形

63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形

64菱形性質(zhì)定理1 菱形的四條邊都相等

65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形

69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等

70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等

75等腰梯形的兩條對(duì)角線相等

76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形

77對(duì)角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

93 判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比

98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

104同圓或等圓的半徑相等

105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

112推論2 圓的兩條平行弦所夾的弧相等

113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

121①直線L和⊙O相交 d<r

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對(duì)邊的和相等

128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角

129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

135①兩圓外離 d>R+r ②兩圓外切 d=R+r

③兩圓相交 R-r<d<R+r(R>r)

④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含d<R-r(R>r)

136定理 相交兩圓的連心線垂直平分兩圓的公共弦

137定理 把圓分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)

142正三角形面積√3a/4 a表示邊長(zhǎng)

143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144弧長(zhǎng)計(jì)算公式:L=n兀R/180

145扇形面積公式:S扇形=n兀R^2/360=LR/2

146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)

(還有一些,大家?guī)脱a(bǔ)充吧)

實(shí)用工具:常用數(shù)學(xué)公式

公式分類 公式表達(dá)式

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

判別式

b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根

b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

三角函數(shù)公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項(xiàng)和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h

正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'

圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l

弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長(zhǎng)

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

            

 

試題分類匯編
填空題  解析幾何部分
1.已知點(diǎn)A(3,13),B(-2,3),則直線AB的斜率是_________.
2. 已知直線y=kx+3與直線x+2y+3=0垂直,則k= ____。
3.若雙曲線 的兩條漸近線互相垂直,那么,雙曲線的左焦點(diǎn)坐標(biāo)是___________.
4.過點(diǎn)P(6,-2),且與直線y=-2x垂直的直線方程為__________。
5.若P是圓 上的動(dòng)點(diǎn),則P到直線 的最小距離是_____。
6雙曲線 的焦點(diǎn)坐標(biāo)是______。.
7.已知F1、F2分別是橢圓 的左右兩個(gè)焦點(diǎn),過F1作傾斜角為 的直線與橢圓交于P、Q兩點(diǎn),則△F2PQ的面積為________.
8.直線x-y+2=0與拋物線 相交于A、B兩點(diǎn),則線段AB的長(zhǎng)是_____。
9.已知點(diǎn)A(0,1),M是拋物線 上的動(dòng)點(diǎn),P是線段AM的中點(diǎn),則點(diǎn)P的軌跡方程是___。
10.已知圓A: ,則圓心A到直線 的距離是__。
11.某橋洞呈拋物線形狀,橋下水面寬16米,當(dāng)水面上漲2米后,水面寬變?yōu)?2米,此時(shí)橋洞頂部距水面高度約為       米(精確到0.1米)。
12.設(shè)F是橢圓 的右焦點(diǎn),且橢圓上至少有21個(gè)不同的點(diǎn)Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為     .
13. 若直線3x-y+5=0與直線x+ay-7=0相互垂直,則a=____
14. 圓的參數(shù)方程 ( )化為普通方程是______。
15.  直線x+2y-4=0和直線2x-6y+5=0的夾角是____________。
16. 若拋物線 的準(zhǔn)線是y軸,則a=_________。
17. 過點(diǎn) 且與直線 垂直的直線方程是__________。
18. 直線2x+y+5=0與直線3x-y-9=0的夾角是___________.
19. 設(shè)P為圓 上的動(dòng)點(diǎn),則點(diǎn)P到直線 的距離的最小值為   .
20. 若方程 表示雙曲線,則 的取值范圍是___________.
21. 設(shè)P是雙曲線 上一點(diǎn),雙曲線的一條漸近線方程為 、F2分別是雙曲線的左、右焦點(diǎn),若 ,則 ____________.
22.設(shè)F是橢圓 的焦點(diǎn),橢圓上有若干個(gè)不同的點(diǎn)Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,若 ,則點(diǎn)Pi的個(gè)數(shù)最多只有        個(gè).
數(shù)列部分
1. 知數(shù)列 前n項(xiàng)的和為 ,則數(shù)列的通項(xiàng)公式是_____。
2.公比為q的無窮遞縮等比數(shù)列 的所有項(xiàng)的和等于所有偶數(shù)項(xiàng)和的3倍,則q=     
3.下面由火柴桿拼成的一系列圖形中,第n個(gè)圖形由n個(gè)正方形組成:

 

n=1       n=2              n=3                  n=4
通過觀察可以發(fā)現(xiàn),第n個(gè)圖形中,火柴桿共有___________根。
4. 等差數(shù)列 中, ,則 _____。
5.已知數(shù)列 前n項(xiàng)和 (b是常數(shù)),如果此數(shù)列是等比數(shù)列,則b=________
6.若Sn是數(shù)列{an}的前n項(xiàng)和,且 ,則 =_______.
7.觀察下列式子: ,可以猜想一般的結(jié)論為:___________________________

8.在等差數(shù)列 中, , ,則數(shù)列 的前___項(xiàng)之和最小。
9.已知公差不為零的等差數(shù)列 的第1、3、9項(xiàng)成等比數(shù)列,則 =___。
10.命題"對(duì)于任意自然數(shù)n,則 能被6整除",利用數(shù)學(xué)歸納法證明這個(gè)命題,先驗(yàn)證n=1時(shí)命題成立,假設(shè)當(dāng)n=k時(shí)命題成立,那么當(dāng)n=k+1時(shí),為了說明此時(shí)命題也成立,應(yīng)該將式子 化成______________的形式。
11.計(jì)算數(shù)列 , , , ……的前幾項(xiàng),猜想它的通項(xiàng)公式是 =______。
12.在等差數(shù)列 中,有下述性質(zhì):設(shè) 是公差為d的等差數(shù)列 中的任意m個(gè)項(xiàng),若  ,則有 。類比上述性質(zhì),在各項(xiàng)均為正數(shù)的等比數(shù)列 中,相應(yīng)的性質(zhì)是_____________。
13. 列{an}中, ,且對(duì)任意自然數(shù)n,點(diǎn)( )在直線2x-y=0上,則該數(shù)列的通項(xiàng)公式是__________。
14. 數(shù)列{an}滿足 ,則它的前n項(xiàng)和Sn=__________。
15. 次計(jì)算數(shù)列 , , , 的前3項(xiàng),由此猜測(cè) 的結(jié)果是____________。
16. 一個(gè)等差數(shù)列 的第5項(xiàng)是10,前3項(xiàng)的和為3,則 =____。
17. 在等比數(shù)列{ }中, >0,a2,a5是方程 的兩根,則 =
18. 已知某數(shù)列前n項(xiàng)和為n3,且前n個(gè)偶數(shù)項(xiàng)的和為 ,則前n個(gè)奇數(shù)項(xiàng)的和為___。
19. 在等差數(shù)列{ }中, >0,且 ,Sn是該數(shù)列前n的和,若Sn取最大值,則n=___。
20.在數(shù)列 中,a1=13,且3an=3an+1+2,則使anan+1<0成立的n取值是_______。
21.某縣1990年的國(guó)民生產(chǎn)總值為a萬元,要實(shí)現(xiàn)到2010年完成國(guó)民生產(chǎn)總值4a萬元的戰(zhàn)略目標(biāo),則這20年間,每年平均增長(zhǎng)率至少要___________才能完成這一設(shè)想。 (精確到0.001)
22.如圖,用火柴棍擺出一系列三角形圖案,按照這種方式擺下去,試猜測(cè)第n個(gè)圖案中,共需要_______________根火柴棍。

 

 

 第二學(xué)期高二數(shù)學(xué)(理科)五一綜合試題

命題人:鄒遠(yuǎn)雄 時(shí)間(填空40分鐘,解答題60分鐘)
練習(xí)一:
1正態(tài)總體的概率密度函數(shù)為),則總體的平均數(shù)和標(biāo)準(zhǔn)差分別是   
 
2觀察(1
2.
由以上兩式成立,推廣到一般結(jié)論,寫出你的推論:     .
 
 
 
3某廠生產(chǎn)的燈泡能用小時(shí)的概率為,能用小時(shí)的概率為,則已用小時(shí)的燈泡能用到小時(shí)的概率為      .
 
4.有5組數(shù)據(jù),,,,若劃去一組數(shù)據(jù)后,剩下的4組數(shù)據(jù)的線性相關(guān)系數(shù)最大,那么應(yīng)劃去數(shù)據(jù)       .
 
5從一批含有件正品、件次品的產(chǎn)品中,不放回地任取件,則取得次品數(shù)的概率分布為      .
 
6. 有6個(gè)座位3人去坐,要求恰好有兩個(gè)空位相連的不同坐法有   _ 種.
 
7對(duì)于平面幾何中的命題“如果兩個(gè)角的兩邊分別對(duì)應(yīng)垂直,那么這兩個(gè)角相等或互補(bǔ)”,在立體幾何中,類比上述命題:可以得到命題:“      ”;這個(gè)類比命題的真假性是       .
 
8甲乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為,則甲恰好擊中目標(biāo)2次且乙至少擊中目標(biāo)2次的概率為   _   .
 
9.已知的展開式中第項(xiàng)與第項(xiàng)的系數(shù)的比為,其中,則展開式中的常數(shù)項(xiàng)是   .
 
10設(shè)復(fù)數(shù)(為虛數(shù)單位),則
.
11. 現(xiàn)有紅、黃、藍(lán)三種顏色的旗子各面,在每種顏色的旗子上分別畫上A、B、C、D、E 種不同的圖案,若從中取面旗子,要求顏色齊全且圖案各不相同,則共有    _   種不同的取法
 
12. a0, z|z|+az+i=0, 則復(fù)數(shù)z =      .
練習(xí)二:
1、已知:命題,命題,          條件。
2、1,3,5,7,9中任取3 個(gè)數(shù)字,2,4,6,8中任取2個(gè),一共可以組成                                               個(gè)沒有重復(fù)的五位數(shù)字。  
 3、函數(shù)的單調(diào)遞減區(qū)間是           。
 4、定積分的值是         。
 5、“不存在實(shí)數(shù),”的否定是                         。   . 
6、設(shè),,……   , 等于           。
7、復(fù)數(shù)的純虛數(shù)時(shí),的值是         。
8、在中,不等式成立;在四邊形中,
不等式成立;在五邊形中,
成立。根據(jù)前面的規(guī)律,猜想在邊形中,
不等式           成立。
9、用反證法證明命題“,如果是偶數(shù),那么中至少有一個(gè)是偶數(shù)”時(shí),應(yīng)假設(shè)           。
10、對(duì)于兩個(gè)復(fù)數(shù),定義運(yùn)算“⊙”為⊙。設(shè)非零復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為,點(diǎn)為坐標(biāo)原點(diǎn),如果⊙ =0,那么等于           。
11 已知復(fù)數(shù)滿足,求復(fù)數(shù)            
12、已知數(shù)列滿足), .,
猜想的通項(xiàng)公式             。
練習(xí)三:
1的展開式中項(xiàng)的系數(shù)為 .⑴求常數(shù)的值;⑵求證:能被整除.
 
 
 
 
 
 
 
 
 
 
 
2中任取2個(gè)數(shù),從中任取2個(gè)數(shù),⑴能組成多少個(gè)沒有重復(fù)數(shù)字的四位數(shù)?⑵若將⑴中所有個(gè)位是的四位數(shù)從小到大排成一列,則第個(gè)數(shù)是多少?
 
 
 
 
 
 
 
 
 
 
3.是否存在常數(shù)a、b,使得等式:   對(duì)一切正整數(shù)n都成立 ,并證明你的結(jié)論.
 
 
 
 
 
 
 
 
 
 
 
4設(shè)函數(shù).
1)當(dāng)x=6時(shí),求 的展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
2)是否存在使得 恒成立? 若存在,試證明你的結(jié)論并求出a的值;若不存在,請(qǐng)說明理由.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5、如圖,制作一個(gè)圓錐形漏斗,其母線長(zhǎng)為,高為。
1)求圓錐形漏斗的體積與高之間的關(guān)系;
2)當(dāng)高為何值時(shí)圓錐形漏斗的體積取得最大值?
            

 

 


本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
【?數(shù)學(xué)】【?高中全部,公式?定理,大集中】
高中數(shù)學(xué)公式大全
高考數(shù)學(xué)32條秒殺公式 數(shù)學(xué)暴強(qiáng)秒殺型推論
初中數(shù)學(xué)知識(shí)點(diǎn)回顧與公式整理
初中數(shù)學(xué)公式
【步步高】2015屆高三數(shù)學(xué)北師大版(通用,理)總復(fù)習(xí)學(xué)案:學(xué)案23 正弦定理和余弦定理
更多類似文章 >>
生活服務(wù)
熱點(diǎn)新聞
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服