中文字幕理论片,69视频免费在线观看,亚洲成人app,国产1级毛片,刘涛最大尺度戏视频,欧美亚洲美女视频,2021韩国美女仙女屋vip视频

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
深度神經(jīng)網(wǎng)絡(luò)(DNN)是否模擬了人類大腦皮層結(jié)構(gòu)?



我是生物本科,認(rèn)知神經(jīng)科學(xué)研究生在讀,課余時間比較喜歡編程和機(jī)器學(xué)習(xí),正在自學(xué),了解的稍微多一些。我試著從我的角度來說下我看到的深度學(xué)習(xí)和神經(jīng)科學(xué)的聯(lián)系。

深度學(xué)習(xí)和神經(jīng)科學(xué)這兩個學(xué)科現(xiàn)在都很大,我的經(jīng)歷尚淺,如果大家發(fā)現(xiàn)哪里說得不太對,歡迎提出指正,謝謝!

那我們就自底往上說。

1神經(jīng)元

在深度學(xué)習(xí)領(lǐng)域,神經(jīng)元是最底層的單元,如果用感知機(jī)的模型, wx + b, 加上一個激活函數(shù)構(gòu)成了全部,輸入和輸出都是數(shù)字,研究的比較清楚,別的不說,在參數(shù)已知的情況下,有了輸入可以計算輸出,有了輸出可以計算輸入。

但在神經(jīng)科學(xué)領(lǐng)域,神經(jīng)元并不是最底層的單位,舉例來說,有人在做神經(jīng)元膜離子通道相關(guān)的工作。一個神經(jīng)元的輸入,可以分為三部分,從其他神經(jīng)元來的電信號輸入,化學(xué)信號輸入,還有編碼在細(xì)胞內(nèi)的信號(興奮,抑制類型,這里可以類比為 激活函數(shù)?),輸出也是三個,電輸出,化學(xué)輸出,改變自身狀態(tài)(LTP 長時程增強(qiáng), LTD長時程抑制)。

我們是否足夠了解神經(jīng)元? 我個人十分懷疑這一點,前幾天還看到一個關(guān)于神經(jīng)元的進(jìn)展,大意是神經(jīng)元不僅能對單一信號產(chǎn)生反應(yīng),還能對一定一定間隔的信號產(chǎn)生反應(yīng)。 神經(jīng)元的底層編碼能力其實更強(qiáng)。我們神經(jīng)科學(xué)發(fā)展了這么久,可能真的連神經(jīng)元都沒真正的搞清楚。

在這另外說一句,深度神經(jīng)網(wǎng)絡(luò)里面,大部分節(jié)點都是等同的,但是在人類神經(jīng)網(wǎng)絡(luò)里面,并不是這樣。不同的腦區(qū),甚至腦區(qū)內(nèi)部,神經(jīng)元的形態(tài)都可以有很大的差異,如V1內(nèi)部的六層就是基于神經(jīng)元形態(tài)的區(qū)分。從這個角度,人類神經(jīng)系統(tǒng)要更復(fù)雜一些。我個人并不否認(rèn)每一種神經(jīng)元可以用不同初始化參數(shù)的 節(jié)點來代替,但是目前來說,復(fù)雜度還是要比深度神經(jīng)網(wǎng)絡(luò)要高。

2信號編碼方式

再說編碼方式,神經(jīng)科學(xué)里面的神經(jīng)元是會產(chǎn)生0-1 的動作電位,通過動作電位的頻率來編碼相應(yīng)的信號(腦子里面的大部分是這樣,外周會有其他形式的),而人工神經(jīng)網(wǎng)絡(luò)?大部分我們聽到的,看到的應(yīng)該都不是這種方式編碼的,但是脈沖神經(jīng)網(wǎng)絡(luò)這個東西確實也有,(今天去ASSC 開會的時候看到了一個很有趣的工作,以后有空再寫。)

神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

目前的深度神經(jīng)網(wǎng)絡(luò)主要是三種結(jié)構(gòu),DNN(全連接的),CNN(卷積), RNN(循環(huán))。還有一些很奇怪的, 比如說Attention 的?不好意思,文章還沒看,不敢亂說……

放點圖:

DNN:

來自 :Neural Networks - Ufldl

CNN:

出處: AlexNet

RNN:

出處: Understanding LSTM Networks

神經(jīng)科學(xué)里面的網(wǎng)絡(luò)結(jié)構(gòu),此處以V1 為例:

來源: Adaptation and Neuronal Network in Visual Cortex

和大家想的不同,視覺區(qū)分了V1,V2,V3,V4,V5(MT),上面還有FFA, 和一些掌管更高級功能的腦區(qū)。在這里面每一個小的視皮層里面,并不是純由神經(jīng)元互相連接構(gòu)成的,仍然存在不同的層級結(jié)構(gòu)。這里去google 找了一張圖,不用管具體的文章,主要說明的是V1 的精細(xì)結(jié)構(gòu)和連接關(guān)系。V1 的主要功能是識別點和不同角度的線段(Hubel 和W 在上世紀(jì)50年代在貓上的工作),但是其實不止如此,V1 還對顏色有一定的感知。

如果在這個層面作比較,我自己的理解是,人類神經(jīng)網(wǎng)絡(luò)是 DNN+ CNN + RNN 再加上脈沖作為編碼方式。層內(nèi)更像DNN, 層間和CNN 很類似,在時間上展開就是RNN。

好,我們繼續(xù)。

3訓(xùn)練方式:

深度神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方式主要是 反向傳播,從輸出層一直反向傳播到第一層,每一層不斷修正出現(xiàn)的錯誤。但是大腦里面并沒有類似反向傳播機(jī)制,最簡單的解釋,神經(jīng)元信號傳遞具有方向性,并沒機(jī)會把信號返回上一層。舉個例子,我要拿起手邊的杯子,視覺發(fā)現(xiàn)向右偏移了一點,那我會自然而然的移動整個手臂向左一點,然后試著去重新抓住杯子。好像沒人是讓手指,手,最后是手臂朝杯子移動,甚至多次才能最后成功吧。在此引用下一篇文章里面的圖。

來源文章: Towards Biologically Plausible Error Signal Transmission in Neural Networks

我們的大腦,更像最后 DFA 的原理。出錯了,把誤差送到一個更靠近輸入的地方,然后重新訓(xùn)練。

4記憶和遺忘:

提到記憶的話,這里主要說的是LSTM, LSTM 的記憶儲存在每個節(jié)點的權(quán)重里面,同時有專門的 遺忘門 控制遺忘速率。這些都是以數(shù)字的形式存儲的。在神經(jīng)系統(tǒng)里面,記憶的存儲是由一些腦區(qū)的突觸的形成和消失來存儲的。其實他們有一個比較共通的地方在于,他們在訓(xùn)練過程中都是漸變的。得益于反向傳播機(jī)制和 神經(jīng)系統(tǒng)的生物性,他們在訓(xùn)練過程中和在不斷的學(xué)習(xí)過程中都只能以一個相對慢的速度發(fā)生改變,從學(xué)習(xí)速率角度來講,他們是比較相似的。

然后我們來說遺忘。遺忘在LSTM 里面是通過門來控制的,在神經(jīng)系統(tǒng)里面,我覺得是和STDP相關(guān)的,它的基礎(chǔ)是 Hebb 假說, Fire Together, Wire Together, 同步放電的神經(jīng)元傾向于建立一個更強(qiáng)的連接。STDP 拓展了這一點,考慮了兩神經(jīng)元放電的先后順序帶來的影響。

簡單來說,如果突觸前神經(jīng)元放電先于突觸后神經(jīng)元(神經(jīng)元信號傳導(dǎo)具有方向性,從突觸前到突觸后),這個突觸會進(jìn)入一個LTP 長時程增強(qiáng)狀態(tài),會對來自突觸前的信號有更強(qiáng)的反應(yīng)。反之,如果突觸前神經(jīng)元放電后于突觸后,則會進(jìn)入一個長時程抑制的狀態(tài)(說明他倆并沒有接收到相同來源的信號,信號不相關(guān)),一段時間的反應(yīng)更弱。

深度神經(jīng)網(wǎng)絡(luò)里面門的權(quán)重也是 反向傳播訓(xùn)練出來的,也有漸變的這個性質(zhì),當(dāng)對于快速變化的刺激,有一定的滯后。從這個角度來說,人類神經(jīng)系統(tǒng)要更靈活一些,可以在很短的時間內(nèi)完成狀態(tài)的切換。

覺得想說的大概就是這些,因為我自己做的研究是 視覺注意,更多在人身上做,所以對于中間的環(huán)路級別的研究,并不是特別的熟悉。再往上,談到人類大腦皮層的工作,個人覺得做的十分的有限,對于大部分腦區(qū),我們并不知道他們是怎么工作的,只是能把不同的腦區(qū)和不同的功能對應(yīng)起來(還不一定準(zhǔn))。在這個角度上談他們的異同是不太負(fù)責(zé)的,容易被打臉。

接下來我會試著邀請幾個朋友來說下環(huán)路這個級別的事情,然后會找其他同行幫我挑錯和補(bǔ)充。很多東西都是按照記憶寫的,一些東西不一定準(zhǔn)確。

5觀點總結(jié)

正如在提綱里面提到的。 對的答案往往類似,而錯誤的答案各有不同。地球上這么多高等的生命都有類似的底層網(wǎng)絡(luò)結(jié)構(gòu),而其中的一種還發(fā)展出了這么偉大的文明,神經(jīng)網(wǎng)絡(luò)這個結(jié)構(gòu),至少已經(jīng)被我們自己證明是一種有效的形式。但是是不是智能這個形式的全局最優(yōu)解?我個人持懷疑態(tài)度。

神經(jīng)網(wǎng)絡(luò)是一個有效的結(jié)構(gòu),所以大家用這個結(jié)構(gòu)做出一些很好的結(jié)果,我一定都不吃驚。但是如果談模擬的話,就是盡力要往這個方向靠。這點上,我個人并不是十分看好這種方式。我們向蝙蝠學(xué)習(xí)用聲音定位,發(fā)展的聲吶無論是距離還是效果都遠(yuǎn)超蝙蝠。我們能超過蝙蝠的原因,第一是我們的技術(shù)有拓展性,底層原理共通的情況下,解決工程和機(jī)械問題,我們可以不那么輕松但是也做到了探測幾千米,甚至幾十公里。第二個原因就是我們需要而蝙蝠不需要,他們天天在山洞里面睡覺。哪用得著探測幾十公里的距離,探到了也吃不著。

其實人類大腦也很類似,大腦是一個進(jìn)化的產(chǎn)物。是由環(huán)境不斷塑造而成的,人為什么沒進(jìn)化出計算機(jī)一樣的計算能力,因為不需要。但是其實反過來也有一定的共通的地方,大腦里面的一些東西,我們也不需要,我們千百年來忍饑挨餓進(jìn)化出的 對于脂肪攝入的需求,在兒童時期對于糖類攝取的需求。這么說的話,我們對于大腦,同樣去其糟粕,取其精華不是更好嗎?

我上面提到的是一個理想的情況,我們對大腦已經(jīng)了解的比較透徹的,知道該去掉哪,留下哪。。但是現(xiàn)在,可能還要走一段模擬的路子。

大概就是這個觀點。 總結(jié)一下,就是, 深度神經(jīng)網(wǎng)絡(luò)和大腦皮層有共通的地方,但是并不能算是模擬。只是大家都找到了解題的同一個思路而已。



本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
Science:揭示大腦發(fā)育過程期間一種控制神經(jīng)元連接形成的重要信號通路
干細(xì)胞是什么,你不知道的事
腦源性神經(jīng)營養(yǎng)因子
神經(jīng)系統(tǒng)如何實現(xiàn)?
大腦是如何發(fā)育的?
Neuron | 使用深度人工神經(jīng)網(wǎng)絡(luò)模擬單個皮質(zhì)神經(jīng)元
更多類似文章 >>
生活服務(wù)
熱點新聞
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服