海歸學(xué)者發(fā)起的公益學(xué)術(shù)平臺(tái)
分享信息,整合資源
交流學(xué)術(shù),偶爾風(fēng)月
對(duì)于半導(dǎo)體異質(zhì)結(jié),其中兩種半導(dǎo)體材料的能帶對(duì)齊類(lèi)型直接影響其實(shí)際應(yīng)用領(lǐng)域和范圍。常見(jiàn)的半導(dǎo)體能帶對(duì)齊類(lèi)型包括三種:跨騎 (I型), 交錯(cuò) (II型), 以及錯(cuò)層 (III型),如圖1所示。在I型能帶對(duì)齊中,異質(zhì)結(jié)能帶的價(jià)帶頂和導(dǎo)帶底均位于帶隙較小的半導(dǎo)體材料上。在帶隙較大的材料上激發(fā)的電子和空穴可自發(fā)移動(dòng)到帶隙較小的材料后發(fā)生輻射復(fù)合。因此,具有I型能帶對(duì)齊方式的異質(zhì)結(jié)可用于制備發(fā)光器件。而對(duì)于II型能帶對(duì)齊,異質(zhì)結(jié)的導(dǎo)帶底和價(jià)帶頂位于不同的材料上,使得電子與空穴發(fā)生空間分離。因此,具有II型能帶對(duì)齊的異質(zhì)結(jié)可用于制備光伏和光探測(cè)器件。2020年,半導(dǎo)體一維范德華異質(zhì)結(jié)被成功合成,其中管徑小至3.9納米的單晶二硫化鉬納米管可同軸生長(zhǎng)在單壁碳管或氮化硼納米管外。了解一維范德華異質(zhì)結(jié)中同軸納米管之間的能帶對(duì)齊,是探索和發(fā)現(xiàn)這些新型異質(zhì)結(jié)構(gòu)中獨(dú)特現(xiàn)象與功能的關(guān)鍵一步。
來(lái)自中國(guó)西湖大學(xué)工學(xué)院的李文彬教授團(tuán)隊(duì)利用第一性原理計(jì)算方法,系統(tǒng)研究并闡明了曲率對(duì)鉬基和鎢基過(guò)渡金屬二硫化物(TMDC) 一維范德華異質(zhì)結(jié)中能帶對(duì)齊的影響。該研究發(fā)現(xiàn),對(duì)于單獨(dú)的TMDC納米管,隨著納米管直徑的縮小,其導(dǎo)帶底能量呈現(xiàn)單調(diào)下降的趨勢(shì),而價(jià)帶頂能量先下降再上升。這一現(xiàn)象源自曲率誘導(dǎo)的撓曲電效應(yīng)以及納米管周向固有拉伸應(yīng)變的協(xié)同作用。相較于絕大多數(shù)TMDC二維范德華異質(zhì)結(jié)所呈現(xiàn)的II型能帶對(duì)齊,對(duì)于TMDC一維范德華異質(zhì)結(jié),在曲率影響納米管帶邊能級(jí)的基礎(chǔ)上,撓曲電電壓導(dǎo)致的管間耦合可使MoSe2@WS2,
MoTe2@MoSe2, 以及MoTe2@WS2等多個(gè)異質(zhì)結(jié)體系在不同曲率下出現(xiàn)從II型到 I型能帶對(duì)齊類(lèi)型的轉(zhuǎn)變,如圖2所示。因此,通過(guò)曲率的控制,TMDC一維范德華異質(zhì)結(jié)有可能在同一材料體系中實(shí)現(xiàn)發(fā)光和光探測(cè)功能的集成。該研究為理解一維范德華異質(zhì)結(jié)中的能帶對(duì)齊奠定了重要的理論基礎(chǔ),并為合理設(shè)計(jì)一維同軸TMDC范德華異質(zhì)結(jié)鋪平了道路。
圖1:常見(jiàn)的半導(dǎo)體能帶對(duì)齊類(lèi)型:跨騎 (I型), 交錯(cuò) (II型),以及錯(cuò)層 (III型)。紅色和藍(lán)色分別代表半導(dǎo)體材料的導(dǎo)帶和價(jià)帶。
圖2:曲率導(dǎo)致的過(guò)渡金屬二硫化物(TMDC)一維范德華異質(zhì)結(jié)能帶對(duì)齊類(lèi)型轉(zhuǎn)變的示意圖。當(dāng)TMDC納米管的管徑(D)減小時(shí),一些異質(zhì)結(jié)體系的能帶對(duì)齊類(lèi)型可發(fā)生從II型到I型的轉(zhuǎn)變。
Curvature-controlled band alignment transition in 1D van der Waals heterostructures
Shu Zhao, Chunxia Yang, Ziye Zhu, Xiaoping Yao & Wenbin Lig
The effect of curvature on the band alignment of one-dimensional (1D) van der Waals (vdW) transition metal dichalcogenide (TMDC) heterostructures is studied by comprehensive first-principles calculations. We find that, as the diameter of a TMDC nanotube decreases, the combined effect of curvature-induced flexoelectricity and circumferential tensile strain causes a rapid lowering of the conduction band minimum, whereas the valence band maximum exhibits an initial lowering before rising. As individual TMDC nanotubes form coaxial heterostructures, the concerted effect of diameter-dependent band-edge levels and intertube coupling via flexovoltage can result in a transition of intertube band alignment from Type II to Type I in multiple heterostructural systems, including large-diameter MoSe2@WS2, MoTe2@MoSe2, and MoTe2@WS2 heterostructures. These results lay down a foundation for the rational design of 1D vdW heterostructures.
聯(lián)系客服