自己改的時(shí)候,注意的是要用tf.get_variable而不是tf.Variable
如果用下面這個(gè)我自己寫的,每個(gè)GPU給相同的數(shù)據(jù),GPU利用率有損失,不知道為啥
# coding=utf-8from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("/tmp/data/", one_hot=True)import tensorflow as tflearning_rate = 0.001training_steps = 8250batch_size = 100display_step = 100n_hidden_1 = 256n_hidden_2 = 256n_input = 784n_classes = 10def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return vardef build_model(): def multilayer_perceptron(x, weights, biases): layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer with tf.variable_scope('aaa'): weights = { 'h1': _variable_on_cpu('h1',[n_input, n_hidden_1],tf.random_normal_initializer()), 'h2': _variable_on_cpu('h2',[n_hidden_1, n_hidden_2],tf.random_normal_initializer()), 'out': _variable_on_cpu('out_w',[n_hidden_2, n_classes],tf.random_normal_initializer()) } biases = { 'b1': _variable_on_cpu('b1',[n_hidden_1],tf.random_normal_initializer()), 'b2': _variable_on_cpu('b2',[n_hidden_2],tf.random_normal_initializer()), 'out': _variable_on_cpu('out_b',[n_classes],tf.random_normal_initializer()) } pred = multilayer_perceptron(x, weights, biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) return cost,preddef average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g,_ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_gradswith tf.Graph().as_default(), tf.device('/cpu:0'): x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) tower_grads = [] optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) with tf.variable_scope(tf.get_variable_scope()): for i in xrange(2): with tf.device('/gpu:%d' % i): cost,pred = build_model() tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(cost) tower_grads.append(grads) grads = average_gradients(tower_grads) apply_gradient_op = optimizer.apply_gradients(grads) train_op = apply_gradient_op init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(training_steps): image_batch, label_batch = mnist.train.next_batch(batch_size) _, cost_print = sess.run([train_op, cost], {x:image_batch, y:label_batch}) if step % display_step == 0: print("step=%04d" % (step+1)+ " cost=" + str(cost_print)) print("Optimization Finished!") correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) with sess.as_default(): print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})) sess.close()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103